Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature

2014 ◽  
Vol 150-151 ◽  
pp. 315-329 ◽  
Author(s):  
Xiaojiang Yao ◽  
Lei Zhang ◽  
Lulu Li ◽  
Lichen Liu ◽  
Yuan Cao ◽  
...  
2012 ◽  
Vol 27 (5) ◽  
pp. 495-500 ◽  
Author(s):  
Da-Wang WU ◽  
Qiu-Lin ZHANG ◽  
Tao LIN ◽  
Mao-Chu GONG ◽  
Yao-Qiang CHEN

2022 ◽  
Author(s):  
Zhitao Han ◽  
Huan Du ◽  
Duo Xu ◽  
Yu Gao ◽  
Shaolong Yang ◽  
...  

FeMn/SnxTiO2 catalysts were synthesized by introducing Sn as an additive to modify TiO2 supports, and the Sn doping could improve the SO2 tolerance and low-temperature SCR activity significantly.


Clay Minerals ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 665-672 ◽  
Author(s):  
K. Bahranowski ◽  
J. Janas ◽  
T. Machej ◽  
E. M. Serwicka ◽  
L. A. Vartikian

AbstractA series of V-doped titania-pillared clay catalysts, characterized by ICP-AES chemical analysis, X-ray diffraction, BET surface area measurement, and ESR spectroscopy, have been tested in the selective catalytic reduction of NO by NH3. An ESR analysis shows that V dopant is anchored to the titania pillars. Vanadyl species with differing degrees of in-plane V-O π-covalent bonding are produced depending on the method of sample preparation. Polymeric V species appear as the V content is increased. Catalytic performance of these systems depends on the method of preparation and on the V content. The best catalyst, converting 90-100% NO in the temperature range 523-623 K, is obtained by exchange of pillared montmorillonite with vanadyl ions, at an extent of exchange below the level where significant amounts of polymeric V species appear. The co-pillared catalyst, containing vanadyl centres characterized by a higher degree of in-plane ncovalent bonding (according to ESR), is less selective than the exchanged samples.


Sign in / Sign up

Export Citation Format

Share Document