Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion

2010 ◽  
Vol 87 (5) ◽  
pp. 1631-1640 ◽  
Author(s):  
Vaibhav K. Arghode ◽  
Ashwani K. Gupta
Author(s):  
Jochen Rupp ◽  
Jon Carrotte ◽  
Adrian Spencer

Gas turbine combustion systems are prone to thermo-acoustic instabilities, and this is particularly the case for new low emission lean burn type systems. The presence of such instabilities is basically a function of the unsteady heat release within the system (i.e., both magnitude and phase) and the amount of damping. This paper is concerned with this latter process and the potential damping provided by perforated liners and other circular apertures found within gas turbine combustion systems. In particular, the paper outlines experimental measurements that characterize the flow field within the near field region of circular apertures when being subjected to incident acoustic pressure fluctuations. In this way the fundamental process by which acoustic energy is converted into kinetic energy of the velocity field can be investigated. Experimental results are presented for a single orifice located in an isothermal duct at ambient test conditions. Attached to the duct are two loudspeakers that provide pressure fluctuations incident onto the orifice. Unsteady pressure measurements enable the acoustic power absorbed by the orifice to be determined. This was undertaken for a range of excitation amplitudes and mean flows through the orifice. In this way regimes where both linear and nonlinear absorption occur along with the transition between these regimes can be investigated. The key to designing efficient passive dampers is to understand the interaction between the unsteady velocity field, generated at the orifice and the acoustic pressure fluctuations. Hence experimental techniques are also presented that enable such detailed measurements of the flow field to be made using particle image velocimetry. These measurements were obtained for conditions at which linear and nonlinear absorption was observed. Furthermore, proper orthogonal decomposition was used as a novel analysis technique for investigating the unsteady coherent structures responsible for the absorption of energy from the acoustic field.


Author(s):  
Jochen Rupp ◽  
Jon Carrotte ◽  
Michael Macquisten

This paper considers the use of perforated porous liners for the absorption of acoustic energy within aero style gas turbine combustion systems. The overall combustion system pressure drop means that the porous liner (or ‘damping skin’) is typically combined with a metering skin. This enables most of the mean pressure drop, across the flame tube, to occur across the metering skin with the porous liner being exposed to a much smaller pressure drop. In this way porous liners can potentially be designed to provide significant levels of acoustic damping, but other requirements (e.g. cooling, available space envelope etc) must also be considered as part of this design process. A passive damper assembly was incorporated within an experimental isothermal facility that simulated an aero-engine style flame tube geometry. The damper was therefore exposed to the complex flow field present within an engine environment (e.g. swirling efflux from a fuel injector, coolant film passing across the damper surface etc.). In addition, plane acoustic waves were generated using loudspeakers so that the flow field was subjected to unsteady pressure fluctuations. This enabled the performance of the damper, in terms of its ability to absorb acoustic energy, to be evaluated. To complement the experimental investigation a simplified 1D analytical model was also developed and validated against the experimental results. In this way not only was the performance of the acoustic damper evaluated, but also the fundamental processes responsible for this measured performance could be identified. Furthermore the validated analytical model also enabled a wide range of damping geometry to be assessed for a range of operating conditions. In this way damper geometry can be optimized (e.g. for a given space envelope) whilst the onset of non-linear absorption (and hence the potential to ingest hot gas) can also be identified.


Author(s):  
Christophe Duwig ◽  
Laszlo Fuchs

The new challenge of the Gas Turbine industry is to develop new technologies for meeting electricity demand growth and reducing harmful emissions. Thus a better understanding of the combustion phenomenon and an improvement in simulation capabilities are needed. Large Eddy Simulation tools brought the hope of meeting these two conditions and enabling the design of safe and clean burners. In the present paper, the influence of the unsteady mixing on the flame in a Lean Premixed Pre-vaporized combustor have been investigated. A premixed combustion flamelet model has been extended to non-uniform fuel/air mixtures cases. Extra terms in the equations, their effects and the modeling issues are discussed. Additionally, the effects of mixing on the flow field in an industrial gas turbine combustion chamber have been investigated. The mean flow field has been found to be weakly sensitive to the mixing effects. It is deduced that the modeling of the mixing and the combustion can be decoupled in the RANS framework. Regarding the flame dynamics, all runs show similar characteristic frequencies. However, different details of models lead to differences in the temperature fluctuations. This suggests that a rigorous modeling of the thermo-acoustic sources (e.g. heat-release fluctuations) requires accurate modeling of the mixing/combustion coupling, for handling accurately the dynamics of the flame.


Author(s):  
D. Fiaschi ◽  
G. Manfrida ◽  
L. Bonciani

The results of the investigation of the flow in a transparent (quartz tube) downscaled (≈1:3) model of a lean-premix type gas turbine combustion chamber are presented and discused. The model was tested at atmospheric pressure in reacting conditions; flow measurements were taken by a two-channel fiber-optic laser doppler velocimeter, using Al2O3 seeding of the air flowrate. The measurements cover a wide flow field inside the combustion chamber, including flame development and recirculating regions. Long-time samples (10–20 s) were used in order to achieve a good accuracy in the measurement of average flow conditions over the whole flow field; this involved a limited capability of representation of high-frequency components of turbulence, which could be locally obtained with optimization of the data rate and seeding conditions. Fast measurements were also locally performed where the seeding conditions were favourable. Integral variables and power spectra for reacting conditions show some distinctive aspects for the turbulence structure of reacting turbulent flows in confined spaces. Further measurements cover the outlet throat section of the premix combustor, demonstrating the persistence of a radial flow component on account of wall curvature effects and a certain degree of asimmetry in the inlet velocity distribution.


Author(s):  
Jochen Rupp ◽  
Jon Carrotte ◽  
Adrian Spencer

Gas turbine combustion systems are prone to thermo-acoustic instabilities, and this is particularly the case for new, low emission, lean burn type systems. The presence of such instabilities is basically a function of the unsteady heat release within the system (i.e. both magnitude and phase), and the amount of damping. This paper is concerned with this latter process and the potential damping provided by perforated liners and other circular apertures found within gas turbine combustion systems. In particular the paper outlines experimental measurements that characterise the flow field within the near field region of circular apertures when being subjected to incident acoustic pressure fluctuations. In this way the fundamental process by which acoustic energy is converted into kinetic energy of the velocity field can be investigated. Experimental results are presented for a single orifice located in an isothermal duct at ambient test conditions. Attached to the duct are two loudspeakers that provide pressure fluctuations incident onto the orifice. Unsteady pressure measurements enable the acoustic power absorbed by the orifice to be determined. This was undertaken for a range of excitation amplitudes and mean flows through the orifice. In this way regimes where both linear and non-linear absorption occur along with the transition between these regimes can be investigated. The key to designing efficient passive dampers is to understand the interaction between the unsteady velocity field, generated at the orifice, and the acoustic pressure fluctuations. Hence experimental techniques are also presented that enable such detailed measurements of the flow field to be made using PIV. These measurements were obtained for conditions at which linear and non-linear absorption was observed. Furthermore, Proper Orthogonal Decomposition was used as a novel analysis technique for investigating the unsteady coherent structures responsible for the absorption of energy from the acoustic field.


Author(s):  
Jochen Rupp ◽  
Jon Carrotte ◽  
Michael Macquisten

This paper considers the use of perforated porous liners for the absorption of acoustic energy within aero style gas turbine combustion systems. The overall combustion system pressure drop means that the porous liner (or “damping skin”) is typically combined with a metering skin. This enables most of the mean pressure drop, across the flame tube, to occur across the metering skin with the porous liner being exposed to a much smaller pressure drop. In this way porous liners can potentially be designed to provide significant levels of acoustic damping, but other requirements (e.g., cooling, available space envelope, etc) must also be considered as part of this design process. A passive damper assembly was incorporated within an experimental isothermal facility that simulated an aero-engine style flame tube geometry. The damper was therefore exposed to the complex flow field present within an engine environment (e.g., swirling efflux from a fuel injector, coolant film passing across the damper surface, etc.). In addition, plane acoustic waves were generated using loudspeakers so that the flow field was subjected to unsteady pressure fluctuations. This enabled the performance of the damper, in terms of its ability to absorb acoustic energy, to be evaluated. To complement the experimental investigation a simplified one-dimensional (1D) analytical model was also developed and validated against the experimental results. In this way not only was the performance of the acoustic damper evaluated, but also the fundamental processes responsible for this measured performance could be identified. Furthermore, the validated analytical model also enabled a wide range of damping geometry to be assessed for a range of operating conditions. In this way damper geometry can be optimized (e.g., for a given space envelope) while the onset of nonlinear absorption (and hence the potential to ingest hot gas) can also be identified.


Sign in / Sign up

Export Citation Format

Share Document