Volume 1: Turbo Expo 2004
Latest Publications


TOTAL DOCUMENTS

94
(FIVE YEARS 0)

H-INDEX

11
(FIVE YEARS 0)

Published By ASMEDC

0791841669

Author(s):  
Steven J. Greenberg ◽  
Neil K. McDougald ◽  
Leonel O. Arellano

ALZETA Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOx emission performance. These injectors use a patented technique to form interacting high-flow and low-flow flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology has been given the product name nanoSTAR™. Previous work involved the development of nanoSTAR technology from the proof-of-concept stage to prototype testing. Rig testing of single injectors and of two injectors simulating a sector of an annular combustion liner have been completed for pressure ratios up to 17 and combustion air inlet temperatures up to 700 K (800°F). This paper presents results from the first ever full-scale demonstration of surface-stabilized fuel injectors. An annular combustion liner, fitted with twelve nanoSTAR injectors was successfully tested up to a pressure ratio of 12 and combustion air inlet temperature of 700 K (800°F). NOx emissions were 2 ppm with CO emissions of 3 ppm both corrected to 15% O2. The combustion system exhibited excellent temperature uniformity around the annular combustor outlet with a maximum pattern factor of 0.16 and engine-appropriate radial profiles.


Author(s):  
Jochen R. Kalb ◽  
Thomas Sattelmayer

The technological objective of this work is the development of a lean-premixed burner for natural gas. Sub-ppm NOx emissions can be accomplished by shifting the lean blowout limit (LBO) to slightly lower adiabatic flame temperatures than the LBO of current standard burners. This can be achieved with a novel burner concept utilizing periodic flue gas recirculation: Hot flue gas is admixed to the injected premixed fresh mixture with a mass flow rate of comparable magnitude, in order to achieve self-ignition. The subsequent combustion of the diluted mixture again delivers flue gas. A fraction of the combustion products is then admixed to the next stream of fresh mixture. This process pattern is to be continued in a cyclically closed topology, in order to achieve stable combustion of e.g. natural gas in a temperature regime of very low NOx production. The principal ignition behavior and NOx production characteristics of one sequence of the periodic process was modeled by an idealized adiabatic system with instantaneous admixture of partially or completely burnt flue gas to one stream of fresh reactants. With the CHEMKIN-II package a reactor network consisting of one perfectly stirred reactor (PSR, providing ignition in the first place) and two plug flow reactors (PFR) has been used. The effect of varying burnout and the influence of the fraction of admixed flue gas have been evaluated. The simulations have been conducted with the reaction mechanism of Miller and Bowman and the GRI-Mech 3.0 mechanism. The results show that the high radical content of partially combusted products leads to a massive decrease of the time required for the formation of the radical pool. As a consequence, self-ignition times of 1 ms are achieved even at adiabatic flame temperatures of 1600 K and less, if the flue gas content is about 50%–60% of the reacting flow after mixing is complete. Interestingly, the effect of radicals on ignition is strong, outweighs the temperature deficiency and thus allows stable operation at very low NOx emissions.


Author(s):  
Suresh R. Vilayanur ◽  
John Battaglioli

A new bypass system using an improved design has been fabricated and tested on a Kawasaki M1A-13X gas turbine engine. The engine and catalytic combustor are currently installed at the City of Santa Clara’s Silicon Valley Power municipal electrical generating stations and connected to the utility grid. The use of a bypass system with a catalytic combustor, incorporating the Xonon Cool Combustion™ technology, on an M1A-13X system increases the low emissions load turndown and ambient operating range without impacting engine efficiency. The increased operating range is achieved because the bypass system provides the required adiabatic combustion temperature (Tad) in the combustor’s post-catalyst burn out zone without changing the turbine inlet temperature. A detailed measurement of the pressure drops, in the old bypass system, revealed that there were large flow losses present, particularly in the re-injection spool piece and the extraction plenum. Since it was determined that the spool had the highest pressure loss, this was the component targeted for improvement. The analysis coupled with detailed measurements on the reinjection piece revealed that the effective area actually varied with flow As the flow changed, so did the flow mechanics inside and exiting the spool piece. Therefore, in order to achieve the design target, the flow area of the spool piece had to be optimized at the predicted capacity flow rate. CFD analysis of the spool piece revealed the regions of losses in the re-injection piece. This analysis along with a one-dimensional flow analysis of the entire system enabled the design of new spool re-injection piece. Once the design was completed, the new bypass system was fabricated and tested. Bypass flow capacity was increased by about 22%. This was achieved by alleviating regions of flow losses and also by using a new “scoop” design for the bypass reinjection tubes. As expected, engine turndown capacity and ambient operating range were improved with the new design.


Author(s):  
Joao Parente ◽  
Giulio Mori ◽  
Viatcheslav V. Anisimov ◽  
Giulio Croce

In the framework of the non-standard fuel combustion research in micro-small turbomachinery, a newly designed micro gas turbine combustor for a 100-kWe power plant in CHP configuration is under development at the Ansaldo Ricerche facilities. Combustor design starts from a single silo chamber shape with two fuel lines, and is associated with a radial swirler flame stabiliser. Lean premix technique is adopted to control both flame temperature and NOx production. Combustor design process envisages two major steps, i.e. diagnostics-focussed design for methane only and experimentally validated design optimisation with suitable burner adaptation to non-standard fuels. The former step is over, as the first prototype design is ready for experimental testing. Step two is now beginning with a preliminary analysis of the burner adaptation to non-standard fuels. The present paper focuses on the first step of the combustor development. In particular, main design criteria for both burner and liner cooling system development are presented. Besides, design process control invoked both 2D and 3D CFD analysis. Two turbulence models, FLUENT standard k-ε model and Reynolds Stress Model (RSM), are refereed and the results compared. Here both a detailed analysis of CFD results and a preliminary analysis of main chemical kinetic phenomena are discussed.


Author(s):  
Kenneth W. Van Treuren

The gas turbine industry is experiencing growth in many sectors. An important part of teaching a gas turbine course is exposing students to the practical applications of the gas turbine. This laboratory proposes an opportunity for students to view an operating gas turbine engine in an aircraft propulsion application and to model the engine performance. A Pratt and Whitney PT6A-20 turboprop was run at a local airfield and engine parameters typical of cockpit instrumentation were taken. The students, in teams of two, then modeled the system using the software PARA and PERF in an attempt to match the manufacturer’s specifications. This laboratory required students to research the parameters necessary to model this engine that were not part of the data set provided by the manufacturer. The research and modeling encompassed areas such as technology level, efficiencies, fuel consumption, and performance. The end result was a two-page report containing the students’ calculations comparing the actual performance of the engine with the manufacturer’s specifications. Supporting graphs and figures were included as appendices. The same type laboratory could be adapted for co-generation gas turbines. Over 121 colleges and universities have co-generation facilities on campus and that presents a unique opportunity for the students to observe the operation of a land-based gas turbine used for power generation. A 5 MW TB5000 manufactured by Ruston (Alstom) Gas Engines is available on the Baylor University campus and is highlighted as an example. Potential problems encountered with using the Baylor University gas turbine are discussed which include lack of appropriate engine instrumentation.


Author(s):  
Yuzhen Lin ◽  
Yunhui Peng ◽  
Gaoen Liu

A low NOx emission combustor design was presented in this paper. The design features the premixer-prevaporizer tube with multihole and two stages arranged radially in line, with the outer stage being pilot stage and inner stage being main stage. The multihole premixer and prevaporizer is a part of main stage. The results of NOx emission were provided and also compared with the baseline design that the premixer and prevaporizer tube without multihole. The double swirler prefilming airblast atomizer was installed in the premixed prevaporized duct entrance. The mean drop size and radial fuel flux distribution were measured to determine proper configurations of the multihole premixer-prevaporizer. NOx emission investigations were carried out using a test combustor with one pilot stage and one main stage under the operating condition of high inlet temperature (800K) and inlet air pressure was atmospheric pressure. The experiment results demonstrated large NOx emissions reduction of the multihole premixer-prevaporizer compared with the baseline design. The more even fuel-air mixing, which was gained by the multiple jets, intensified the fuel and air mixing within the premixer-prevaporizer, resulted in the large reduction of NOx emission. The configurations of multihole premixer-prevaporizer had great influence on NOx emissions reduction.


Author(s):  
Nalin Navarathna ◽  
Vitalij Fedulov ◽  
Andrew Martin ◽  
Torsten Fransson

Remote laboratory exercises are gaining popularity due to advances in communication technologies along with the need to provide realistic yet flexible educational tools for tomorrow’s engineers. Laboratory exercises in turbomachinery aerodynamics generally involve substantial equipment in both size and power, so the development of remotely controlled facilities has perhaps not occurred as quickly as in other fields. This paper presents an overview of a new interactive laboratory exercise involving aerodynamics in a linear cascade of stator blades. The laboratory facility consists of a high-speed fan that delivers a maximum of 2.5 kg/s of air to the cascade. Traversing pneumatic probes are used to determine pressure profiles at upstream and downstream locations, and loss coefficients are later computed. Newly added equipment includes cameras, stepper motors, and a data acquisition and control system for remote operation. This paper presents the laboratory facility in more detail and includes discussions related to user interface issues, the development of a virtual laboratory exercise as a complement to experiments, and comparative evaluation of Virtual, Remote and Local laboratory exercises.


Author(s):  
William H. Day

Under the Gas Turbine Industrial Fellowship Program, students in Bachelor’s, Master’s and Ph. D. programs studying gas turbine-related technology spend 10 to 12 weeks employed at the facilities of turbine manufacturers or users of gas turbine equipment. The program is funded by the U.S. Department of Energy. This paper describes the Fellowship program, its relationship to the DOE Turbine Program, the University Turbine Systems Research (UTSR) program, and plans for future Fellowship development.


Author(s):  
Paul R. Van Slooten ◽  
Ravi K. Madabhushi ◽  
John H. Stufflebeam ◽  
Jeffrey Lienau

To achieve ultra-low NOx emissions in practical lean premixed combustors, a uniform spatial and temporal fuel/air distribution is required. In addition the response of the fuel/air premixer to acoustic perturbations plays a central role in the coupling of the combustion and acoustic processes that potentially lead to thermoacoustic instabilities. In this paper, results from the simulation of a fuel/air premixer with and without acoustic forcing are reported. An unsteady Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) code is used in the simulations and the computed results are compared with data obtained using a synchronous PLIF technique. Planar phase-locked images of the fuel/air distribution during the forcing cycle are measured from which the planar averaged (bulk) fuel/air ratio “signal” is obtained. The fuel/air ratio to velocity transfer function (time delay and magnitude) at a specific forcing frequency is computed corresponding to a given jet-to-air momentum flux ratio. The comparisons between the computed and measured time delays are quite good, while the magnitude comparisons are currently inconclusive.


Author(s):  
Samuel Bonnafous ◽  
Victor Piffaut ◽  
Wai-Ho Choy ◽  
Dimitris E. Nikitopoulos

Results from un-forced experiments in flows ensuing from circular and equivalent square coaxial nozzles with parallel sides are presented in this paper. The nozzles are contoured and are designed so that the hydraulic diameters of the internal flow passages are identical for both geometries. The flow experiments were conducted at a co-flow-jet Reynolds number of Re = 16,000 and inner-to-outer jet nominal velocity ratios of λ = 0, 0.5, 1.5. Axis switching, a phenomenon readily observed in single non-axisymmetric nozzles, is shown for the first time to occur in the square coaxial nozzles as well. Comparisons of the mixing regions of the flows from both geometries are made to examine mixing advantages when using square nozzle configurations. Comparisons of stream wise mean velocity fields measured on a center plane parallel to the square nozzle sides, on a diagonal plane of the square nozzle and the center plane of the corresponding circular nozzle, are presented and discussed. Axis switching is shown to be evident in the near-field shear regions for all velocity ratios, resulting in considerable mixing advantages. The spreading rates (and therefore mixing rates) of the outer mixing region of the square nozzles clearly exceed the spreading rate observed in the circular case on the central plane. Axis switching and improved mixing is also observed in the inner mixing region of the square nozzle. This work is relevant to coaxial nozzles for gas turbine combustor applications, although the study has been carried out in a scaled up geometry with respect to this application.


Sign in / Sign up

Export Citation Format

Share Document