Energy management and design of centralized air-conditioning systems through the non-revisiting strategy for heuristic optimization methods

2010 ◽  
Vol 87 (11) ◽  
pp. 3494-3506 ◽  
Author(s):  
K.F. Fong ◽  
S.Y. Yuen ◽  
C.K. Chow ◽  
S.W. Leung
2020 ◽  
Vol 37 (6) ◽  
pp. 2085-2110
Author(s):  
Ho Pham Huy Anh ◽  
Cao Van Kien

Purpose The purpose of this paper is to propose an optimal energy management (OEM) method using intelligent optimization techniques applied to implement an optimally hybrid heat and power isolated microgrid. The microgrid investigated combines renewable and conventional power generation. Design/methodology/approach Five bio-inspired optimization methods include an advanced proposed multi-objective particle swarm optimization (MOPSO) approach which is comparatively applied for OEM of the implemented microgrid with other bio-inspired optimization approaches via their comparative simulation results. Findings Optimal multi-objective solutions through Pareto front demonstrate that the advanced proposed MOPSO method performs quite better in comparison with other meta-heuristic optimization methods. Moreover, the proposed MOPSO is successfully applied to perform 24-h OEM microgrid. The simulation results also display the merits of the real time optimization along with the arbitrary of users’ selection as to satisfy their power requirement. Originality/value This paper focuses on the OEM of a designed microgrid using a newly proposed modified MOPSO algorithm. Optimal multi-objective solutions through Pareto front demonstrate that the advanced proposed MOPSO method performs quite better in comparison with other meta-heuristic optimization approaches.


2019 ◽  
Vol 236 ◽  
pp. 648-661 ◽  
Author(s):  
Syed Aftab Rashid ◽  
Zeeshan Haider ◽  
S.M. Chapal Hossain ◽  
Kashan Memon ◽  
Fazil Panhwar ◽  
...  

2019 ◽  
Vol 6 (3) ◽  
pp. 80-85
Author(s):  
Denis Igorevich Smagin ◽  
Konstantin Igorevich Starostin ◽  
Roman Sergeevich Savelyev ◽  
Anatoly Anatolyevich Satin ◽  
Anastasiya Romanovna Neveshkina ◽  
...  

One of the ways to achieve safety and comfort is to improve on-board air conditioning systems.The use of air cooling machine determines the air pressure high level at the point of selection from the aircraft engine compressor. Because of the aircraft operation in different modes and especially in the modes of small gas engines, deliberately high stages of selection have to be used for ensuring proper operation of the refrigeration machine in the modes of the aircraft small gas engines. Into force of this, most modes of aircraft operation have to throttle the pressure of the selected stage of selection, which, together with the low efficiency of the air cycle cooling system, makes the currently used air conditioning systems energy inefficient.A key feature of the architecture without air extraction from the main engines compressors is the use of electric drive compressors as a source of compressed air.A comparative analysis of competing variants of on-board air conditioning system without air extraction from engines for longrange aircraft projects was performed at the Moscow Aviation Institute (National Research University).The article deals with the main approaches to the decision-making process on the appearance of a promising aircraft on-board air conditioning system at the stage of its conceptual design and formulated the basic requirements for the structure of a complex criterion at different life cycle stages.The level of technical and technological risk, together with a larger installation weight, will require significant costs for development, testing, debugging and subsequent implementation, but at the same time on-board air conditioning system scheme without air extraction from the engines will achieve a significant increase in fuel efficiency at the level of the entire aircraft.


Sign in / Sign up

Export Citation Format

Share Document