Physical degradation of cathode catalyst layer: A major contributor to accelerated water flooding in long-term operation of DMFCs

2014 ◽  
Vol 129 ◽  
pp. 346-353 ◽  
Author(s):  
Asad Mehmood ◽  
Myung-Gi An ◽  
Heung Yong Ha
Author(s):  
Prodip K. Das ◽  
Xianguo Li ◽  
Zhong-Sheng Liu

The performance of a polymer electrolyte membrane (PEM) fuel cell is significantly affected by liquid water generated at the cathode catalyst layer (CCL). Conversely, the ionic conductivity of PEM is directly proportional to its water content; it must have sufficient water. Therefore, it is essential to maintain a delicate water balance, which seems difficult without properly understanding liquid water transport from the CCL. In the present study, a one-dimensional analytical solution of liquid water transport across the CCL is derived from the fundamental transport equations. The effect of CCL wettability on liquid water transport and the effect of liquid water “flooding” on reactant transport have been investigated. It has been observed that hydrophilic characteristic of a CCL plays significant role on the liquid water transport. The liquid water saturation in a hydrophilic CCL can be reduced by increasing the surface wettability or lowering contact angle. Based on a dimensionless time constants analysis, it has been shown that liquid water production from the phase change process is negligible compared to water production from the electrochemical process.


2021 ◽  
Vol 490 ◽  
pp. 229531
Author(s):  
Yurii V. Yakovlev ◽  
Yevheniia V. Lobko ◽  
Maryna Vorokhta ◽  
Jaroslava Nováková ◽  
Michal Mazur ◽  
...  

2012 ◽  
Vol 26 (2) ◽  
pp. 1178-1184 ◽  
Author(s):  
Mei Chen ◽  
Ji Chen ◽  
Yuan Li ◽  
Qinghong Huang ◽  
Haifeng Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document