Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage

2019 ◽  
Vol 253 ◽  
pp. 113603 ◽  
Author(s):  
Ian J. Scott ◽  
Pedro M.S. Carvalho ◽  
Audun Botterud ◽  
Carlos A. Silva
2020 ◽  
Vol 12 (3) ◽  
pp. 1083 ◽  
Author(s):  
Qingtao Li ◽  
Jianxue Wang ◽  
Yao Zhang ◽  
Yue Fan ◽  
Guojun Bao ◽  
...  

The increasing penetration of renewable energy brings great challenges to the planning and operation of power systems. To deal with the fluctuation of renewable energy, the main focus of current research is on incorporating the detailed operation constraints into generation expansion planning (GEP) models. In most studies, the traditional objective function of GEP is to minimize the total cost (including the investment and operation cost). However, in power systems with high penetration of renewable energy, more attention has been paid to increasing the utilization of renewable energy and reducing the renewable energy curtailment. Different from the traditional objective function, this paper proposes a new objective function to maximize the accommodation of renewable energy during the planning horizon, taking into account short-term operation constraints and uncertainties from load and renewable energy sources. A power grid of one province in China is modified as a case study to verify the rationality and effectiveness of the proposed model. Numerical results show that the proposed GEP model could install more renewable power plants and improve the accommodation of renewable energy compared to the traditional GEP model.


Sign in / Sign up

Export Citation Format

Share Document