scholarly journals Robust stability criteria for a class of uncertain discrete-time systems with time-varying delay

2013 ◽  
Vol 37 (3) ◽  
pp. 1468-1479 ◽  
Author(s):  
K. Ramakrishnan ◽  
G. Ray
2008 ◽  
Vol 2008 ◽  
pp. 1-15 ◽  
Author(s):  
Valter J. S. Leite ◽  
Márcio F. Miranda

Sufficient linear matrix inequality (LMI) conditions to verify the robust stability and to design robust state feedback gains for the class of linear discrete-time systems with time-varying delay and polytopic uncertainties are presented. The conditions are obtained through parameter-dependent Lyapunov-Krasovskii functionals and use some extra variables, which yield less conservative LMI conditions. Both problems, robust stability analysis and robust synthesis, are formulated as convex problems where all system matrices can be affected by uncertainty. Some numerical examples are presented to illustrate the advantages of the proposed LMI conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Kuang-Yow Lian ◽  
Wen-Tsung Yang ◽  
Peter Liu

We demonstrate an improved stability analysis based on a partition oriented technique for discrete-time systems with interval time-varying delay. The partition oriented technique introduces beneficial terms contributing to the negative definiteness of the Lyapunov function difference, meanwhile completely avoiding traditional inequality based approaches. In contrast, nonpartitioning oriented techniques do not put emphasis on further dividing the interval of the summation in the Lyapunov function. Herein, we demonstrate that the advantages of exploiting partitioning techniques manifest the relaxed stability criteria, as well as the flexibility to tune tradeoff between allowable timedelay range performance and computational load. Simulation carried out on a benchmark discrete-time system reveals the significant improvement in terms of maximum allowable upper bound in comparison.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Siva Kumar Tadepalli ◽  
V. Krishna Rao Kandanvli ◽  
Haranath Kar

The problem of global asymptotic stability of a class of uncertain discrete-time systems in the presence of saturation nonlinearities and interval-like time-varying delay in the state is considered. The uncertainties associated with the system parameters are assumed to be deterministic and normbounded. The objective of the paper is to propose stability criteria having considerably smaller numerical complexity. Two new delay-dependent stability criteria are derived by estimating the forward difference of the Lyapunov functional using the concept of reciprocal convexity and method of scale inequality, respectively. The presented criteria are compared with a previously reported criterion. A numerical example is provided to illustrate the effectiveness of the presented criteria.


Sign in / Sign up

Export Citation Format

Share Document