scholarly journals Robust stability of linear uncertain discrete-time systems with interval time-varying delay

2014 ◽  
Vol 22 ◽  
pp. 650-662 ◽  
Author(s):  
Mehmet Nur Alpaslan PARLAKÇI
2008 ◽  
Vol 2008 ◽  
pp. 1-15 ◽  
Author(s):  
Valter J. S. Leite ◽  
Márcio F. Miranda

Sufficient linear matrix inequality (LMI) conditions to verify the robust stability and to design robust state feedback gains for the class of linear discrete-time systems with time-varying delay and polytopic uncertainties are presented. The conditions are obtained through parameter-dependent Lyapunov-Krasovskii functionals and use some extra variables, which yield less conservative LMI conditions. Both problems, robust stability analysis and robust synthesis, are formulated as convex problems where all system matrices can be affected by uncertainty. Some numerical examples are presented to illustrate the advantages of the proposed LMI conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Kuang-Yow Lian ◽  
Wen-Tsung Yang ◽  
Peter Liu

We demonstrate an improved stability analysis based on a partition oriented technique for discrete-time systems with interval time-varying delay. The partition oriented technique introduces beneficial terms contributing to the negative definiteness of the Lyapunov function difference, meanwhile completely avoiding traditional inequality based approaches. In contrast, nonpartitioning oriented techniques do not put emphasis on further dividing the interval of the summation in the Lyapunov function. Herein, we demonstrate that the advantages of exploiting partitioning techniques manifest the relaxed stability criteria, as well as the flexibility to tune tradeoff between allowable timedelay range performance and computational load. Simulation carried out on a benchmark discrete-time system reveals the significant improvement in terms of maximum allowable upper bound in comparison.


Sign in / Sign up

Export Citation Format

Share Document