lyapunov function
Recently Published Documents


TOTAL DOCUMENTS

1770
(FIVE YEARS 407)

H-INDEX

59
(FIVE YEARS 10)

2022 ◽  
Vol 355 ◽  
pp. 02006
Author(s):  
Adnène Arbi ◽  
Najeh Tahri

In this work, since the importance of investigation of oscillators solutions, an methodology for proving the existence and stability of almost anti-periodic solutions of inertial neural networks model on time scales are discussed. By developing an approach based on differential inequality techniques coupled with Lyapunov function method. A numerical example is given for illustration.


Author(s):  
Arunselvan Ramaswamy ◽  
Shalabh Bhatnagar

In this paper, we consider the stochastic iterative counterpart of the value iteration scheme wherein only noisy and possibly biased approximations of the Bellman operator are available. We call this counterpart the approximate value iteration (AVI) scheme. Neural networks are often used as function approximators, in order to counter Bellman’s curse of dimensionality. In this paper, they are used to approximate the Bellman operator. Because neural networks are typically trained using sample data, errors and biases may be introduced. The design of AVI accounts for implementations with biased approximations of the Bellman operator and sampling errors. We present verifiable sufficient conditions under which AVI is stable (almost surely bounded) and converges to a fixed point of the approximate Bellman operator. To ensure the stability of AVI, we present three different yet related sets of sufficient conditions that are based on the existence of an appropriate Lyapunov function. These Lyapunov function–based conditions are easily verifiable and new to the literature. The verifiability is enhanced by the fact that a recipe for the construction of the necessary Lyapunov function is also provided. We also show that the stability analysis of AVI can be readily extended to the general case of set-valued stochastic approximations. Finally, we show that AVI can also be used in more general circumstances, that is, for finding fixed points of contractive set-valued maps.


Metrologiya ◽  
2021 ◽  
pp. 53-67
Author(s):  
Yu. M. Veshkurtsev ◽  
D. A. Titov

The applied application of the Lyapunov characteristic function is determined by the properties of its estimates. Probabilistic characteristics of estimates of the Lyapunov characteristic function are described for the first time. The probabilistic characteristics of random values of estimates of the Lyapunov function are empirically estimated using statistical methods. The Matlab package has developed a model of a special device for obtaining estimates of the characteristic function by a direct method. A quasi-deterministic signal is fed to the input of the model, the instantaneous values of which are distributed according to the arcsine law, and an array of values of estimates of the Lyapunov function is obtained at the output, which is used to estimate the probabilistic characteristics of these estimates. Statistical estimation was performed by an indirect method. It is established that the values of the estimates of the Lyapunov characteristic function are distributed according to the normal law. The results of the research will be useful in engineering calculations, for example, when detecting message transmission errors in modems with a modulated characteristic function.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zuguo Zhang ◽  
Qingcong Wu ◽  
Xiong Li ◽  
Conghui Liang

Purpose Considering the complexity of dynamic and friction modeling, this paper aims to develop an adaptive trajectory tracking control scheme for robot manipulators in a universal unmodeled method, avoiding complicated modeling processes. Design/methodology/approach An augmented neural network (NN) constituted of radial basis function neural networks (RBFNNs) and additional sigmoid-jump activation function (SJF) neurons is introduced to approximate complicated dynamics of the system: the RBFNNs estimate the continuous dynamic term and SJF neurons handle the discontinuous friction torques. Moreover, the control algorithm is designed based on Barrier Lyapunov Function (BLF) to constrain output error. Findings Lyapunov stability analysis demonstrates the exponential stability of the closed-loop system and guarantees the tracking errors within predefined boundaries. The introduction of SJFs alleviates the limitation of RBFNNs on discontinuous function approximation. Owing to the fast learning speed of RBFNNs and jump response of SJFs, this modified NN approximator can reconstruct the system model accurately at a low compute cost, and thereby better tracking performance can be obtained. Experiments conducted on a manipulator verify the improvement and superiority of the proposed scheme in tracking performance and uncertainty compensation compared to a standard NN control scheme. Originality/value An enhanced NN approximator constituted of RBFNN and additional SJF neurons is presented which can compensate the continuous dynamic and discontinuous friction simultaneously. This control algorithm has potential usages in high-performance robots with unknown dynamic and variable friction. Furthermore, it is the first time to combine the augmented NN approximator with BLF. After more exact model compensation, a smaller tracking error is realized and a more stringent constraint of output error can be implemented. The proposed control scheme is applicable to some constraint occasion like an exoskeleton and surgical robot.


Robotica ◽  
2021 ◽  
pp. 1-16
Author(s):  
Recep Burkan ◽  
Askin Mutlu

Summary For robot manipulators, there are two types of disturbances. One is model parametric uncertainty; the other is unmodelled parameters such as joint friction forces and external disturbances. Unmodelled joint frictions and external disturbances reduce performance in terms of positioning accuracy and repeatability. In order to compensate for unmodelled parameters, the design of a new controller is considered. First, the modelled and unmodelled parameters are included in a dynamic model. Then, based on the dynamic model, a new Lyapunov function is developed. After that, new nonlinear joint friction and external disturbance estimation laws are derived as an analytic solution from the Lyapunov function; thus, the stability of the closed system is guaranteed. Better values of the adaptive dynamic compensators can be extracted by fuzzy rules according to the tracking error. Limitations and knowledge about friction and external disturbances are not required for the design of the controller. The controller compensates for all possible model parameter uncertainties, all possible unknown joint frictions and external disturbances.


Sign in / Sign up

Export Citation Format

Share Document