scholarly journals Multi-choice stochastic transportation problem involving extreme value distribution

2013 ◽  
Vol 37 (4) ◽  
pp. 2230-2240 ◽  
Author(s):  
Deshabrata Roy Mahapatra ◽  
Sankar Kumar Roy ◽  
Mahendra Prasad Biswal
2019 ◽  
Vol 29 (3) ◽  
pp. 337-358 ◽  
Author(s):  
Mitali Acharya ◽  
Adane Gessesse ◽  
Rajashree Mishra ◽  
Srikumar Acharya

In this paper, we considered a multi-objective stochastic transportation problem where the supply and demand parameters follow extreme value distribution having three-parameters. The proposed mathematical model for stochastic transportation problem cannot be solved directly by mathematical approaches. Therefore, we converted it to an equivalent deterministic multi-objective mathematical programming problem. For solving the deterministic multi-objective mathematical programming problem, we used an ?-constraint method. A case study is provided to illustrate the methodology.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Hadeel Al Qahtani ◽  
Ali El–Hefnawy ◽  
Maha M. El–Ashram ◽  
Aisha Fayomi

This paper presents the study of a multichoice multiobjective transportation problem (MCMOTP) when at least one of the objectives has multiple aspiration levels to achieve, and the parameters of supply and demand are random variables which are not predetermined. The random variables shall be assumed to follow extreme value distribution, and the demand and supply constraints will be converted from a probabilistic case to a deterministic one using a stochastic approach. A transformation method using binary variables reduces the MCMOTP into a multiobjective transportation problem (MOTP), selecting one aspiration level for each objective from multiple levels. The reduced problem can then be solved with goal programming. The novel adapted approach is significant because it enables the decision maker to handle the many objectives and complexities of real-world transportation problem in one model and find an optimal solution. Ultimately, a mixed-integer mathematical model has been formulated by utilizing GAMS software, and the optimal solution of the proposed model is obtained. A numerical example is presented to demonstrate the solution in detail.


Author(s):  
Chienann A. Hou ◽  
Shijun Ma

Abstract The allowable bending stress Se of a gear tooth is one of the basic factors in gear design. It can be determined by either the pulsating test or the gear-running test. However, some differences exist between the allowable bending stress Se obtained from these different test methods. In this paper, the probability distribution functions corresponding to each test method are analyzed and the expressions for the minimum extreme value distribution are presented. By using numerical integration, Se values from the population of the same tested gear tooth are obtained. Based on this investigation it is shown that the differences in Se obtained from the different test methods are significant. A proposed correction factor associated with the different experimental approaches is also presented.


Sign in / Sign up

Export Citation Format

Share Document