A RBF-WENO finite volume method for hyperbolic conservation laws with the monotone polynomial interpolation method

2017 ◽  
Vol 112 ◽  
pp. 27-50 ◽  
Author(s):  
Jingyang Guo ◽  
Jae-Hun Jung
2011 ◽  
Vol 32 ◽  
pp. 163-176 ◽  
Author(s):  
A. Bonnement ◽  
T. Fajraoui ◽  
H. Guillard ◽  
M. Martin ◽  
A. Mouton ◽  
...  

2015 ◽  
Vol 18 (4) ◽  
pp. 901-930 ◽  
Author(s):  
Ziyao Sun ◽  
Honghui Teng ◽  
Feng Xiao

AbstractThis paper presents a new and better suited formulation to implement the limiting projection to high-order schemes that make use of high-order local reconstructions for hyperbolic conservation laws. The scheme, so-called MCV-WENO4 (multi-moment Constrained finite Volume with WENO limiter of 4th order) method, is an extension of the MCV method of Ii & Xiao (2009) by adding the 1st order derivative (gradient or slope) at the cell center as an additional constraint for the cell-wise local reconstruction. The gradient is computed from a limiting projection using the WENO (weighted essentially non-oscillatory) reconstruction that is built from the nodal values at 5 solution points within 3 neighboring cells. Different from other existing methods where only the cell-average value is used in the WENO reconstruction, the present method takes account of the solution structure within each mesh cell, and thus minimizes the stencil for reconstruction. The resulting scheme has 4th-order accuracy and is of significant advantage in algorithmic simplicity and computational efficiency. Numerical results of one and two dimensional benchmark tests for scalar and Euler conservation laws are shown to verify the accuracy and oscillation-less property of the scheme.


2019 ◽  
Vol 53 (5) ◽  
pp. 1459-1476
Author(s):  
Shijie Dong ◽  
Philippe G. LeFloch

We introduce a class of nonlinear hyperbolic conservation laws on a Schwarzschild black hole background and derive several properties satisfied by (possibly weak) solutions. Next, we formulate a numerical approximation scheme which is based on the finite volume methodology and takes the curved geometry into account. An interesting feature of our model is that no boundary conditions is required at the black hole horizon boundary. We establish that this scheme converges to an entropy weak solution to the initial value problem and, in turn, our analysis also provides us with a theory of existence and stability for a new class of conservation laws.


2018 ◽  
Vol 40 (1) ◽  
pp. 405-421 ◽  
Author(s):  
N Chatterjee ◽  
U S Fjordholm

Abstract We derive and study a Lax–Friedrichs-type finite volume method for a large class of nonlocal continuity equations in multiple dimensions. We prove that the method converges weakly to the measure-valued solution and converges strongly if the initial data is of bounded variation. Several numerical examples for the kinetic Kuramoto equation are provided, demonstrating that the method works well for both regular and singular data.


Sign in / Sign up

Export Citation Format

Share Document