black hole background
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 21)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Bert van Geemen ◽  
Alessio Marrani ◽  
Francesco Russo

Abstract We consider Bekenstein-Hawking entropy and attractors in extremal BPS black holes of $$ \mathcal{N} $$ N = 2, D = 4 ungauged supergravity obtained as reduction of minimal, matter-coupled D = 5 supergravity. They are generally expressed in terms of solutions to an inhomogeneous system of coupled quadratic equations, named BPS system, depending on the cubic prepotential as well as on the electric-magnetic fluxes in the extremal black hole background. Focussing on homogeneous non-symmetric scalar manifolds (whose classification is known in terms of L(q, P, Ṗ) models), under certain assumptions on the Clifford matrices pertaining to the related cubic prepotential, we formulate and prove an invertibility condition for the gradient map of the corresponding cubic form (to have a birational inverse map which is given by homogeneous polynomials of degree four), and therefore for the solutions to the BPS system to be explicitly determined, in turn providing novel, explicit expressions for the BPS black hole entropy and the related attractors as solution of the BPS attractor equations. After a general treatment, we present a number of explicit examples with Ṗ = 0, such as L(q, P), 1 ⩽ q ⩽ 3 and P ⩾ 1, or L(q, 1), 4 ⩽ q ⩽ 9, and one model with Ṗ = 1, namely L(4, 1, 1). We also briefly comment on Kleinian signatures and split algebras. In particular, we provide, for the first time, the explicit form of the BPS black hole entropy and of the related BPS attractors for the infinite class of L(1, P) P ⩾ 2 non-symmetric models of $$ \mathcal{N} $$ N = 2, D = 4 supergravity.


2021 ◽  
Vol 257 (2) ◽  
pp. 40
Author(s):  
Shiyang Hu ◽  
Xin Wu ◽  
Enwei Liang

Abstract Research has analytically shown that the energy-conserving implicit nonsymplectic scheme of Bacchini, Ripperda, Chen, and Sironi provides a first-order accuracy to numerical solutions of a six-dimensional conservative Hamiltonian system. Because of this, a new second-order energy-conserving implicit scheme is proposed. Numerical simulations of a galactic model hosting a BL Lacertae object and magnetized rotating black hole background support these analytical results. The new method with appropriate time steps is used to explore the effects of varying the parameters on the presence of chaos in the two physical models. Chaos easily occurs in the galactic model as the mass of the nucleus, the internal perturbation parameter, and the anisotropy of the potential of the elliptical galaxy increase. The dynamics of charged particles around the magnetized Kerr spacetime is easily chaotic for larger energies of the particles, smaller initial angular momenta of the particles, and stronger magnetic fields. The chaotic properties are not necessarily weakened when the black-hole spin increases. The new method can be used for any six-dimensional Hamiltonian problems, including globally hyperbolic spacetimes with readily available (3 + 1) split coordinates.


2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Renata Kallosh ◽  
Adel A. Rahman

Author(s):  
Hong Guo ◽  
Xiao-Mei Kuang ◽  
Eleftherios Papantonopoulos ◽  
Bin Wang

AbstractBlack hole spontaneous scalarization has been attracting more and more attention as it circumvents the well-known no-hair theorems. In this work, we study the scalarization in Einstein–scalar-Gauss–Bonnet theory with a probe scalar field in a black hole background with different curvatures. We first probe the signal of black hole scalarization with positive curvature in different spacetimes. The scalar field in AdS spacetime could be formed easier than that in flat case. Then, we investigate the scalar field around AdS black holes with negative and zero curvatures. Comparing with negative and zero cases, the scalar field near AdS black hole with positive curvature could be much easier to emerge. And in negative curvature case, the scalar field is the most difficult to be bounded near the horizon.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Yi-Feng Zou ◽  
Jun-Huai Xu ◽  
Zhan-Feng Mai ◽  
Jia-Hui Huang

AbstractBlack holes immersed in magnetic fields are believed to be important systems in astrophysics. One interesting topic on these systems is their superradiant stability property. In the present paper, we analytically obtain the superradiantly stable regime for the asymptotically flat dyonic Reissner–Nordstrom black holes with charged massive scalar perturbation. The effective potential experienced by the scalar perturbation in the dyonic black hole background is obtained and analyzed. It is found that the dyonic black hole is superradiantly stable in the regime $$0<r_{-}/r_{+}<2/3$$ 0 < r - / r + < 2 / 3 , where $$r_\pm $$ r ± are the event horizons of the dyonic black hole. Compared with the purely electrically charged Reissner–Nordstrom black hole case, our result indicates that the additional coupling of the charged scalar perturbation with the magnetic filed makes the black hole and scalar perturbation system more superradiantly unstable, which provides further evidence on the instability induced by magnetic field in black hole superradiance process.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Francesco Bigazzi ◽  
Alessio Caddeo ◽  
Tommaso Canneti ◽  
Aldo L. Cotrone

Abstract Using the holographic correspondence as a tool, we determine the steady-state velocity of expanding vacuum bubbles nucleated within chiral finite temperature first-order phase transitions occurring in strongly coupled large N QCD-like models. We provide general formulae for the friction force exerted by the plasma on the bubbles and for the steady-state velocity. In the top-down holographic description, the phase transitions are related to changes in the embedding of $$ Dq\hbox{-} \overline{D}q $$ Dq ‐ D ¯ q flavor branes probing the black hole background sourced by a stack of N Dp-branes. We first consider the Witten-Sakai-Sugimoto $$ D4\hbox{-} D8\hbox{-} \overline{D}8 $$ D 4 ‐ D 8 ‐ D ¯ 8 setup, compute the friction force and deduce the equilibrium velocity. Then we extend our analysis to more general setups and to different dimensions. Finally, we briefly compare our results, obtained within a fully non-perturbative framework, to other estimates of the bubble velocity in the literature.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Roberto Auzzi ◽  
Stefano Baiguera ◽  
Sara Bonansea ◽  
Giuseppe Nardelli ◽  
Kristian Toccacelo

Abstract We investigate the complexity=volume proposal in the case of Janus AdS3 geometries, both at zero and finite temperature. The leading contribution coming from the Janus interface is a logarithmic divergence, whose coefficient is a function of the dilaton excursion. In the presence of the defect, complexity is no longer topological and becomes temperature-dependent. We also study the time evolution of the extremal volume for the time-dependent Janus BTZ black hole. This background is not dual to an interface but to a pair of entangled CFTs with different values of the couplings. At late times, when the equilibrium is restored, the couplings of the CFTs do not influence the complexity rate. On the contrary, the complexity rate for the out-of-equilibrium system is always smaller compared to the pure BTZ black hole background.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Panos Betzios ◽  
Nava Gaddam ◽  
Olga Papadoulaki

Abstract We describe a unitary scattering process, as observed from spatial infinity, of massless scalar particles on an asymptotically flat Schwarzschild black hole background. In order to do so, we split the problem in two different regimes governing the dynamics of the scattering process. The first describes the evolution of the modes in the region away from the horizon and can be analysed in terms of the effective Regge-Wheeler potential. In the near horizon region, where the Regge-Wheeler potential becomes insignificant, the WKB geometric optics approximation of Hawking’s is replaced by the near-horizon gravitational scattering matrix that captures non-perturbative soft graviton exchanges near the horizon. We perform an appropriate matching for the scattering solutions of these two dynamical problems and compute the resulting Bogoliubov relations, that combines both dynamics. This allows us to formulate an S-matrix for the scattering process that is manifestly unitary. We discuss the analogue of the (quasi)-normal modes in this setup and the emergence of gravitational echoes that follow an original burst of radiation as the excited black hole relaxes to equilibrium.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Rachel A. Rosen ◽  
Luca Santoni

Abstract We provide a systematic and comprehensive derivation of the linearized dynamics of massive and partially massless spin-2 particles in a Schwarzschild (anti) de Sitter black hole background, in four and higher spacetime dimensions. In particular, we show how to obtain the quadratic actions for the propagating modes and recast the resulting equations of motion in a Schrödinger-like form. In the case of partially massless fields in Schwarzschild de Sitter spacetime, we study the isospectrality between modes of different parity. In particular, we prove isospectrality analytically for modes with multipole number L = 1 in four spacetime dimensions, providing the explicit form of the underlying symmetry. We show that isospectrality between partially massless modes of different parity is broken in higher-dimensional Schwarzschild de Sitter spacetimes.


Sign in / Sign up

Export Citation Format

Share Document