Numerical investigation for Caputo-Fabrizio fractional Riccati and Bernoulli equations using iterative reproducing kernel method

Author(s):  
Shaher Momani ◽  
Nadir Djeddi ◽  
Mohammed Al-Smadi ◽  
Shrideh Al-Omari
2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Xinjian Zhang ◽  
Xiongwei Liu

A unified reproducing kernel method for solving linear differential equations with functional constraint is provided. We use a specified inner product to obtain a class of piecewise polynomial reproducing kernels which have a simple unified description. Arbitrary order linear differential operator is proved to be bounded about the special inner product. Based on space decomposition, we present the expressions of exact solution and approximate solution of linear differential equation by the polynomial reproducing kernel. Error estimation of approximate solution is investigated. Since the approximate solution can be described by polynomials, it is very suitable for numerical calculation.


2019 ◽  
Vol 30 (11) ◽  
pp. 4711-4733 ◽  
Author(s):  
Omar Abu Arqub

Purpose The subject of the fractional calculus theory has gained considerable popularity and importance due to their attractive applications in widespread fields of physics and engineering. The purpose of this paper is to present results on the numerical simulation for time-fractional partial differential equations arising in transonic multiphase flows, which are described by the Tricomi and the Keldysh equations of Robin functions types. Design/methodology/approach Those resulting mathematical models are solved by using the reproducing kernel method, which provide appropriate solutions in term of infinite series formula. Convergence analysis, error estimations and error bounds under some hypotheses, which provide the theoretical basis of the proposed method are also discussed. Findings The dynamical properties of these numerical solutions are discussed and the profiles of several representative numerical solutions are illustrated. Finally, the prospects of the gained results and the method are discussed through academic validations. Originality/value In this paper and for the first time: the authors presented results on the numerical simulation for classes of time-fractional PDEs such as those found in the transonic multiphase flows. The authors applied the reproducing kernel method systematically for the numerical solutions of time-fractional Tricomi and Keldysh equations subject to Robin functions types.


Sign in / Sign up

Export Citation Format

Share Document