Use of a vibrating plate to enhance natural convection cooling of a discrete heat source in a vertical channel

2007 ◽  
Vol 27 (13) ◽  
pp. 2276-2293 ◽  
Author(s):  
L.A. Florio ◽  
A. Harnoy
1998 ◽  
Vol 22 (3) ◽  
pp. 269-289
Author(s):  
M. Lacroix

A numerical study has been conducted for the heat transfer from a discrete heat source by natural convection in air above coupled with conduction dominated melting of a phase change material (PCM) below via a wall of finite thermal diffusivity. Results indicate that the presence of a PCM layer underneath the wall significantly delays the temperature rise of the heat source. The time delay increases as the thermal diffusivity of the wail material decreases and as the thickness of the PCM layer increases. For high thermal conductivity wall materials [Formula: see text] the steady state heat source temperatures are similar and independent of the PCM layer. On the other hand, for [Formula: see text], the steady state temperatures are higher and dependent on the thickness of the PCM layer. A correlation is proposed in terms of the thickness of the PCM layer and the thermal conductivity ratio of the wall.


2019 ◽  
Vol 41 (11) ◽  
pp. 947-960 ◽  
Author(s):  
Shankar Durgam ◽  
Shakkottai P. Venkateshan ◽  
Thirumalachari Sundararajan

1989 ◽  
Vol 111 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Y. Joshi ◽  
T. Willson ◽  
S. J. Hazard

An experimental investigation of steady state and transient natural convection from a column of eight in-line rectangular heated protrusions in a vertical channel in water is presented. Flow visualizations and element surface temperature measurements were carried out for several power dissipation levels in the range of 0.2–1.5 W per component and channel spacings from 6.4 to 23 mm. The three-dimensional steady flows were visualized in two mutually perpendicular planes. Average component temperatures determined from the measurements on the five fluid exposed faces were used to obtain nondimensional heat transfer rates. Heat transfer data for all channel spacings except the smallest did not differ from the measurements for an isolated surface by more than 14 percent. For the smallest spacing, the component surface temperatures increased significantly due to a reduction in the fluid velocities. Measurements and flow visualizations during the transient indicated an initial diffusive transport period, followed by the evolution of convective effects. No overshoots in component temperatures were found. Steady transport responses with selectively powered components are also examined.


Sign in / Sign up

Export Citation Format

Share Document