thermal diffusivity
Recently Published Documents


TOTAL DOCUMENTS

3851
(FIVE YEARS 473)

H-INDEX

73
(FIVE YEARS 8)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 632
Author(s):  
Yuri I. Golovin ◽  
Alexander I. Tyurin ◽  
Dmitry Yu. Golovin ◽  
Alexander A. Samodurov ◽  
Sergey M. Matveev ◽  
...  

This paper describes an experimental study of the relationships between thermal diffusivity and mechanical characteristics including Brinell hardness, microhardness, and Young’s modulus of common pine (Pinus sylvestris L.), pedunculate oak (Quercus robur L.), and small-leaf lime (Tilia cordata Mill.) wood. A dependence of Brinell hardness and thermal diffusivity tensor components upon humidity for common pine wood is found. The results of the measurement of Brinell hardness, microhardness, Young’s modulus, and main components of thermal diffusivity tensor for three perpendicular cuts are found to be correlated. It is shown that the mechanical properties correlate better with the ratio of longitude to transversal thermal diffusivity coefficients than with the respective individual absolute values. The mechanical characteristics with the highest correlation with the abovementioned ratio are found to be the ratio of Young’s moduli in longitude and transversal directions. Our technique allows a comparative express assessment of wood mechanical properties by means of a contactless non-destructive measurement of its thermal properties using dynamic thermal imaging instead of laborious and material-consuming destructive mechanical tests.


2022 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
Aleksandr G. Novoselov ◽  
Sergei A. Sorokin ◽  
Igor V. Baranov ◽  
Nikita V. Martyushev ◽  
Olga N. Rumiantceva ◽  
...  

This article puts forward arguments in favor of the necessity of conducting complex measurements of molecular transport coefficients that quantitatively determine the coefficients of dynamic viscosity, thermal diffusivity and molecular diffusion. The rheological studies have been carried out on the viscometers of two types: those with a rolling ball (HÖPPLER® KF 3.2.), and those with a rotary one (Rheotest RN 4.1.). The thermophysical studies have been performed using the analyzer Hot Disk TPS 2500S. The measurements have been taken in the temperature range of 283 to 363 K. The concentration of dry substances has varied from 16.2 to 77.7% dry wt. An empirical equation for calculating the density of aqueous solutions of beet molasses has been obtained. The diagrams of the dependence of the dynamic viscosity on the shear rate in the range of 1 s−1 to 500 s−1 at different temperatures have been provided. The diagrams of the dependence of the coefficients of thermal conductivity and thermal diffusivity on the temperature and the concentration of dry substances have been presented, and empirical equations for their calculation have been obtained. The findings can be used for engineering calculations of hydrodynamic and heat-exchange processes in biotechnological equipment.


2022 ◽  
Vol 64 (2) ◽  
pp. 305
Author(s):  
С.Н. Каллаев ◽  
А.Г. Бакмаев ◽  
З.М. Омаров ◽  
Л.А. Резниченко

Investigations of the heat capacity, thermal diffusivity, and thermal conductivity of multiferroics Bi1-xTmxFeO3 (x = 0, 0.05, 0.10, 0.20) have been carried out in the high temperature range of 300-1200 K. and thermal conductivity in the region of phase transitions. The temperature dependences of the specific heat for compositions with x = 0.10 and 0.20 exhibit an additional anomaly characteristic of the phase transition at T = 580 K. The dominant mechanisms of phonon heat transfer in the region of ferroelectric and antiferromagnetic phase transitions are considered. The temperature dependence of the average phonon mean free path is determined.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Huan Lin ◽  
Jinbo Xu ◽  
Fuhua Shen ◽  
Lijun Zhang ◽  
Shen Xu ◽  
...  

This work documents the annealing effect on the thermal conductivity of nanotube film (CNTB) and carbon nanotube fiber (CNTF). The thermal properties of carbon nanotube samples are measured by using the transient electro-thermal (TET) technique, and the experimental phenomena are analyzed based on numerical simulation. During the current annealing treatment, CNTB1 always maintains the negative temperature coefficient of resistance (TCR), and its thermal diffusivity increases gradually. When the annealing current is 200 mA, it increases by 33.62%. However, with the increase of annealing current, the TCR of CNTB2 changes from positive to negative. The disparity between CNTB2 and CNTB1 suggests that they have different physical properties and even structures along their lengths. The high-level thermal diffusivity of CNTB2 and CNTF are 2.28–2.46 times and 1.65–3.85 times higher than the lower one. The results show that the decrease of the thermal diffusivity for CNTB2 and CNTF is mainly caused by enhanced Umklapp scattering, the high thermal resistance and torsional sliding during high temperature heating.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 151
Author(s):  
Shuiping Zhu ◽  
Jianjun Sun ◽  
Kaiyang Zhong ◽  
Haisheng Chen

Ground source heat pumps (GSHPs), a high-efficiency and energy-saving air-conditioning technology that utilizes shallow geothermal resources for both heating and cooling, are a vital green energy system for residential and commercial buildings. Improving the performance of such a system was the focus of the current research. As soil temperature and thermal radius are two important aspects that affect the performance of ground source heat pump systems, we conducted a new numerical simulation to capture the changes in sensitive factors and propose the optimized paths. The numerical simulation analyzed the thermal characteristics of a borefield under different pre-cooling times and soil types. The results indicated the following: (1) The rate of the ground temperature change with pre-cooling during the discharging period had a faster rise than in the case without pre-cooling. The longer the precooling time was, the smaller the thermal radius became. In particular, when the precooling time was longer than 14 days, the decrease in the thermal radius rate percentages was less than 4%. (2) Among the three kinds of soils compared, the soils with lower thermal conductivity and thermal diffusivity best suppressed the thermal interference effects. (3) Using a multivariate nonlinear function regression model, a simulation formula was proposed to predict- the thermal radius, which considered the factors of thermal diffusivity, precooling time, and discharging time. The prediction deviation was within 14.8%.


Author(s):  
Nataliia Fialko ◽  
Roman Dinzhos ◽  
Julii Sherenkovskii ◽  
Nataliia Meranova ◽  
Sergii Aloshko ◽  
...  

This paper reports a series of experimental studies to establish regularities of the integrated effect exerted on the specific heat capacity of polymer nanocomposites by such factors as the temperature regime of their production, the value of the mass fraction of the filler, and the temperature of the composite material. The studies were conducted for nanocomposites based on polypropylene filled with carbon nanotubes. When obtaining composites, the method of mixing the components in the melt of the polymer was used. During the studies, the temperature of nanocomposites varied from 295 to 455 K, the mass fraction of the filler ‒ from 0.3 to 10 %. The basic parameter of the technological mode for obtaining composite materials, the value of overheating the polymer melt relative to its melting point, varied in the range of 10...75 K. It is shown that the temperature dependence of the specific heat capacity of the considered composites is sensitive to changes in the overheating of the polymer melt only in the region maximum values of the specific heat capacity. Concentration dependences of the specific heat capacity of the considered nanocomposites at different values of their temperature and the level of overheating of the polymer melt have been built. The studies have been carried out to identify the effects of the influence of the above parameters on the coefficient of thermal diffusivity of nanocomposites. It has been established, in particular, that an increase in the level of overheating the polymer could lead to a very significant increase in the coefficient of thermal diffusivity, which is all the more significant the higher the proportion of filler and the lower the temperature of the composite material. It is shown that the level of overheating the polymer melt relative to its melting point is a parameter that can be used as the basis for the creation of polymer composite materials with specified thermophysical properties.


Sign in / Sign up

Export Citation Format

Share Document