scholarly journals Flow boiling of water in a minichannel: The effects of surface wettability on two-phase pressure drop

2011 ◽  
Vol 31 (11-12) ◽  
pp. 1894-1905 ◽  
Author(s):  
Hai Trieu Phan ◽  
Nadia Caney ◽  
Philippe Marty ◽  
Stéphane Colasson ◽  
Jérôme Gavillet
Author(s):  
Farzad Houshmand ◽  
Hyoungsoon Lee ◽  
Mehdi Asheghi ◽  
Kenneth E. Goodson

As the proper cooling of the electronic devices leads to significant increase in the performance, two-phase heat transfer to dielectric liquids can be of an interest especially for thermal management solutions for high power density devices with extremely high heat fluxes. In this paper, the pressure drop and critical heat flux (CHF) for subcooled flow boiling of methanol at high heat fluxes exceeding 1 kW/cm2 is investigated. Methanol was propelled into microtubes (ID = 265 and 150 μm) at flow rates up to 40 ml/min (mass fluxes approaching 10000 kg/m2-s), boiled in a portion of the microtube by passing DC current through the walls, and the two-phase pressure drop and CHF were measured for a range of operating parameters. The two-phase pressure drop for subcooled flow boiling was found to be significantly lower than the saturated flow boiling case, which can lead to lower pumping powers and more stability in the cooling systems. CHF was found to be increasing almost linearly with Re and inverse of inner diameter (1/ID), while for a given inner diameter, it decreases with increasing heated length.


Author(s):  
Cheol Huh ◽  
Moo Hwan Kim

With a single microchannel and a series of microheaters made with MEMS technique, two-phase pressure drop and local flow boiling heat transfer were investigated using deionized water in a single horizontal rectangular microchannel. The test microchannel has a hydraulic diameter of 100 μm and length of 40 mm. A real time observation of the flow patterns with simultaneous measurement are made possible. Tests are performed for mass fluxes of 90, 169, and 267 kg/m2s and heat fluxes of from 100 to 600 kW/m2. The experimental local flow boiling heat transfer coefficients and two-phase frictional pressure gradient are evaluated and the effects of heat flux, mass flux, and vapor qualities on flow boiling are studied. Both the evaluated experimental data are compared with existing correlations. The experimental heat transfer coefficients are nearly independent on mass flux and the vapor quality. Most of all correlations do not provide reliable heat transfer coefficients predictions with vapor quality and prediction accuracy. As for two-phase pressure drop, the measured pressure drop increases with the mass flux and heat flux. Most of all existing correlations of two-phase frictional pressure gradient do not predict the experimental data except some limited conditions.


Author(s):  
Fumito Kaminaga ◽  
Baduge Sumith ◽  
Kunihito Matsumura

Two-phase pressure drop is experimentally examined in a flow boiling condition in a tube of diameter 1.45 mm using water in ranges of pressure from 10 to 100 kPa, mass flux from 18 to 152 kg/m2s, heat flux from 13 to 646 kW/m2, and exit quality from 0.02 to 0.77. Also, pressure drop in an adiabatic air-water two-phase flow is measured at atmospheric pressure using the same test section and mass flux ranges of liquid and gas as those in the flow boiling. Decreasing system pressure the pressure drop significantly increases at a given mass flux. Influence of vapor phase on the pressure drop is found to be large both in the adiabatic and the diabatic conditions. The frictional pressure drop correlation for the adiabatic two-phase flow is developed and applied to predict pressure drop in the flow boiling. But it cannot give satisfactory predictions. The Chisholm correlation calculating a two-phase pressure drop multiplier is modified to account the influence of vapor phase in a capillary tube and the modified correlation can predict the pressure drop in the flow boiling within an error of 20%.


2016 ◽  
Vol 366 ◽  
pp. 151-156
Author(s):  
Bei Chen Zhang ◽  
Qing Lian Li ◽  
Yuan Wang ◽  
Jian Qiang Zhang

Two-phase pressure drop fluctuations during flow boiling in a single mini-channel were experimentally investigated. Degassed water was tested in circular cross section mini-channels with the hydraulic diameter of 1.0 mm at liquid mass fluxes range of 21.19-84.77 kg m-2 s-1 and heat fluxes of 0~155.75 kW m-2. Effects of heat flux and mass flux on pressure drop fluctuations were discussed based on the time and frequency domain analysis of the measured pressure drop. Two types of fluctuations were identified, which are the incipient boiling fluctuation (IBF) and the explosive boiling fluctuation (EBF) respectively. The IBF is a low frequency low amplitude fluctuation, which relates to the bubble dynamics when incipient boiling occurs. It is sensitive to the thermal and flow conditions. With the increase of heat flux and mass flux, the IBF is suppressed. The EBF is a low frequency high amplitude fluctuation, which occurs near the critical heat flux.


Author(s):  
Daxiang Deng ◽  
Qingsong Huang ◽  
Yanlin Xie ◽  
Wei Zhou ◽  
Xiang Huang ◽  
...  

Two-phase boiling in advanced microchannel heat sinks offers an efficient and attractive solution for heat dissipation of high-heat-flux devices. In this study, a type of reentrant copper microchannels was developed for heat sink cooling systems. It consisted of 14 parallel Ω-shaped reentrant copper microchannels with a hydraulic diameter of 781μm. Two-phase pressure drop characteristics were comprehensively accessed via flow boiling tests. Both deionized water and ethanol tests were conducted at inlet subcooling of 10°C and 40°C, mass fluxes of 125–300kg/m2·s, and a wide range of heat fluxes and vapor qualities. The effects of heat flux, mass flux, inlet subcoolings and coolants on the two-phase pressure drop were systematically explored. The results show that the two-phase pressure drop of reentrant copper microchannels generally increased with increasing heat fluxes and vapor qualities. The role of mass flux and inlet temperatures was dependent on the test coolant. The water tests presented smaller pressure drop than the ethanol ones. These results provide critical experimental information for the development of microchannel heat sink cooling systems, and are of considerable practical relevance.


Author(s):  
Ayman Megahed

This paper investigates experimentally flow boiling characteristics in a cross-linked microchannel heat sink at low mass fluxes and high heat fluxes. The heat sink consists of 45 straight microchannels with a hydraulic diameter of 248 μm and heated length of 16 mm. Three cross-links, of width 500 μm, are introduced in the present microchannel heat sink to achieve better temperature uniformity and to avoid flow maldistribution. Flow visualization, flow instability, and two-phase pressure drop measurements are conducted using the dielectric coolant FC-72 for the range of heat flux from 20.1 to 104.2 kW/m2, mass flux from 109 to 290 kg/m2.s, and exit quality from 0.02 to 0.65. Flow visualization studies indicate that the observed flow regime is primarily slug. Instability results show that the periods and amplitudes of inlet pressure and outlet saturation temperature oscillations decrease with increasing mass flux. The two-phase pressure drop strongly increases with the exit quality and the two-phase frictional pressure drop increases by a factor of 1.6–2, at xe, o < 0.3, as compared with that in the straight microchannel heat sink.


Sign in / Sign up

Export Citation Format

Share Document