Heat transfer enhancement and optimization of flat-tube multilouvered fin compact heat exchangers with delta-winglet vortex generators

2016 ◽  
Vol 101 ◽  
pp. 576-591 ◽  
Author(s):  
Daniel Jonas Dezan ◽  
Leandro Oliveira Salviano ◽  
Jurandir Itizo Yanagihara
Author(s):  
Rimjhim Raj Singh ◽  
H.C. Thakur

In this paper, heat transfer enhancement has been numerically investigated for fin and tube compact heat exchangers with radiantly arranged rectangular winglets and has been compared with the existing structures. In the proposed structure, there are total 12 winglets, 3 on each tube arranged radiantly with an attack angle of 60 each. Investigation has been carried out on low Reynolds number from 400-800 heat transfer is compared with other structures without winglet as baseline arrangement, prevailing rectangular winglet arrangement and wavy down rectangular winglet arrangement. The simulation results show that the radiantly arranged winglet that guides the fluid from main flow to the wall creates collision and leads to turbulence behind the tube. It is found that newly proposed structure with radiantly arranged winglets has the highest heat transfer rate, as compared to the existing structures and this can replace the previous structures. The heat transfer characteristics and flow structures are numerically investigated in ANSYS.


1989 ◽  
Vol 12 (1) ◽  
pp. 288-294 ◽  
Author(s):  
Udo Brockmeier ◽  
Martin Fiebig ◽  
Thomas Güntermann ◽  
Nimai K. Mitra

2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Feng-Cai Zheng ◽  
Song Liu ◽  
Zhi-Min Lin ◽  
Jaafar Nugud ◽  
Liang-Chen Wang ◽  
...  

Air-side heat transfer and flow friction characteristics of four different fin patterns suitable for flat tube bank fin heat exchangers are investigated experimentally. The fin patterns are the fin with six dimples, the fin with nine dimples, the double louvered fin, and the fin with delta-winglet vortex generators (VGs). The corresponding plain fins (plain fin I and plain fin II) are used as the references for evaluating the thermal performances of these fin patterns under identical pump power constraint. The performance of the fin with the six dimples is better than that with nine dimples. The performance of the fin with delta-winglet VGs is better than that of the double louvered fin, and the performance of the latter is better than that of the fins with six or nine dimples. In the tested Reynolds number range, the heat transfer enhancement performance factor of the fin with six dimples, the fin with nine dimples, the double louvered fin, and the fin with delta-winglet VGs is 1.2–1.3, 1.1–1.2, 1.3–1.6, and 1.4–1.6, respectively. The correlations of Nusselt number and friction factor with Reynolds number for the fins with six/nine dimples and the double louvered fin are obtained. These correlations are useful to design flat tube bank fin heat exchangers.


Sign in / Sign up

Export Citation Format

Share Document