flat tube
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 62)

H-INDEX

24
(FIVE YEARS 4)

2021 ◽  
Vol 14 (2) ◽  
pp. 106-111
Author(s):  
Ridho Syahrul ◽  
Amnur Akhyan

Penelitian ini menggunakan metode ɛ-NTU untuk menganalisis data. Radiator yang digunakan adalah radiator sepeda motor Yamaha Nmax 155cc dengan jenis aliran vertical, flat tube dan louvered fins, kipas/fan sebagai sumber angin simulasi, dengan campuran 50% air + 50% coolant radiator. Laju aliran air konstan 4 lpm dan temperatur fluida panas konstan 80. Variasi kecepatan aliran udara yang digunakan pada pengujian kali ini adalah 4-8 m/s dan diatur menggunakan Dimmer sebagai alat bantu. Dari pengujian yang telah dilakukan didapat laju massa aliran udara yang paling besar terjadi pada kecepatan kipas 8 m/s. Laju perpindahan panas yang paling besar terjadi dikecepatan kipas 8 m/s sebesar 0,0735 kW dan panas menyeluruh terbesar juga terjadi dikecepatan kipas 8 m/s yaitu sebesar 9,50 W/m2°C. Efisiensi radiator maksimum terjadi pada kecepatan kipas 5 m/s dengan nilai sebesar 7,59. Kata kunci: Efektifitas, Metode ε-NTU, Radiator Nmax 155cc. This study uses the ε-NTU method to analyze the data. The radiator used is a 155cc Yamaha Nmax motorcycle radiator with vertical flow type, flat tube and louvered fins, fan/fan as a simulation source, with a mixture of 50% water + 50% coolant radiator. The water flow rate is constant 4 lpm and the hot fluid temperature is constant 80℃. The variation of air flow velocity used in this test is 4-8 m/s and is adjusted using a dimmer as a tool. From the tests that have been carried out, the largest air flow rate occurs at a fan speed of 8 m/s. The highest heat transfer rate occurs at a fan speed of 8 m/s at 0.0735 kW and the largest overall heat also occurs at a fan speed of 8 m/s at 9.50 W/m2°C. The maximum radiator efficiency occurs at a fan speed of 5 m/s with a value of 7.59 Keywords: Effectivenes, ɛ-NTU Method, Nmax 155cc Radiator


2021 ◽  
Vol 28 ◽  
pp. 101587
Author(s):  
Heng Chen ◽  
Hamdi Ayed ◽  
Riadh Marzouki ◽  
Faezeh Emami ◽  
Ibrahim Mahariq ◽  
...  

Author(s):  
Peng Yang ◽  
Qingshan Liu ◽  
Hongjiang Liu ◽  
Lingling Zhang ◽  
Jiwu Wu ◽  
...  

Author(s):  
Ke Wang ◽  
Jiaqi Liu ◽  
Zunchao Liu ◽  
Yongqing Wang ◽  
Dan Wang

Abstract Microchannel parallel flow gas cooler is commonly used in transcritical carbon dioxide automotive air conditioning system. To investigate the influence of the flat tube protrusion depth on fluid distribution, a numerical calculation model of microchannel parallel flow gas cooler with D-shaped header is established. With the object of even flow distribution, a novel stepped protrusion depth header is proposed. The effects of new header on the flow distribution of gas cooler were studied by numerical simulation. The results show that the flow distribution performance of gas cooler can be improved by changing the flat tube protrusion depth. Changing the protrusion depth of three groups of flat tubes simultaneously can achieve a better flow distribution performance of gas cooler than changing the protrusion depth of only one or two groups of flat tubes. When compared with the protrusion depth of all flat tubes is 0, the novel stepped protrusion depth header reduces the total flow distribution nonuniformity of gas cooler by 34–51%. The research in this paper provides a method for improving the flow distribution performance of gas coolers.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Dinesh Kumar ◽  
Gurpreet Singh Sokhal ◽  
Nima Khalilpoor ◽  
AlibekIssakhov ◽  
Babak Mosavati

This research manuscript addresses the study of the performance of a flat tube having a 90° bend under the flow of three different nanofluids such as copper oxide, multiwalled carbon nanotubes, and aluminum oxide/water nanofluids at different inlet fluid temperatures and Reynolds numbers. The performance of the flat tube is analyzed under the Reynolds number between 5000 and 11000 and a fluid inlet temperature range of 35°C–50°C. The results obtained in this study show that the heat transfer coefficient increases with the increase in volume concentration as well as Reynolds number. The maximum heat transfer coefficient is obtained using multiwalled carbon nanotubes followed by copper oxide and then aluminum oxide. This study also illustrates that the friction factor increases with the increase in volume concentration and decrease in Reynolds number. The results of the numerical study have been validated with the help of an experimental study. The study has proved that the use of nanofluids instead of the conventional fluid can lead to reducing the size of the tube for the same amount of heat transfer which can prove the reduction of the size in heat transfer equipment. Furthermore, it is also observed in this study that the presence of the 90° bend in the flat tube improved the heat transfer performance due to the increased turbulence at the bent section of the tube.


CFD letters ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1-12
Author(s):  
Nguyen Minh ◽  
Pham Ba Thao

Proper determination of inclination angle of a flat tube may increase the overall heat transfer performance without extending heat transfer surface. In this paper, the inclined flat tube heat exchanger with plain fins is numerically investigated. The influence of flat tube inclination angle and Reynolds number on the thermo-hydraulic performance index was evaluated. Tube pitch, fin spacing and flat tube size are fixed. Solving 3D computational domain with the symmetric boundary condition is used to reduce computation time. The results show that when increasing the inclination angle of the flat tube from 0 to 45°, both heat transfer and pressure loss increase because the free area of air flow decreases leading to an increase in air velocity and impingement heat transfer. The variation of inclination angle from 0 to 15°, the increase in heat transfer is stronger than the increase in the pressure loss penalty, so the performance index reaches a maximum of 0.405 at the angle of 15°. Contours of temperature, pressure and velocity at different inclination angles are presented to clarify the thermo-hydraulic characteristics of finned-tube heat exchangers using inclined flat tubes. The current work yields heat transfer enhancement ability by adjusting inclination angle of a heat transfer flat tube.


2021 ◽  
Vol MA2021-03 (1) ◽  
pp. 288-288
Author(s):  
Xiaoqiang Zhang ◽  
Mayken Espinoza Andaluz ◽  
Lei Wang ◽  
Tingshuai Li ◽  
Martin Andersson

Sign in / Sign up

Export Citation Format

Share Document