Fluence to local skin absorbed dose and dose equivalent conversion coefficients for monoenergetic positrons using Monte-Carlo code MCNP6

2016 ◽  
Vol 107 ◽  
pp. 372-376 ◽  
Author(s):  
L. Bourgois ◽  
R. Antoni
2020 ◽  
Vol 26 (1) ◽  
pp. 31-44
Author(s):  
Hassan Al Kanti ◽  
O. El Hajjaji ◽  
T. El Bardouni

AbstractThe present study aims to calculate a new database of conversion coefficients from fluence and air Kerma to personal dose equivalent in two terms: absorbed dose and Kerma-approximations. In this work, we propose a new equation to perform an analytical fit of our Monte Carlo (MC) calculated conversion coefficients for photons for different angles. Also, we have calculated the conversion coefficients using the EGSnrc code. The conversion coefficients have been calculated for beams of monoenergetic photons from 0.015 to 10 MeV, incident on phantom ICRU for angles of incidence from 0° to a 75° in steps of 15°. Our computed values agree well when compared with those published for the ICRU 57 in Kerma-approximations with statistical uncertainties in the calculation around 2%. We can conclude from this work that the analytical approach is successful and powerful such as Monte Carlo methods to calculate the operational quantities.


2014 ◽  
Vol 95 ◽  
pp. 309-312 ◽  
Author(s):  
M.C. Martins ◽  
T.P.V. Cordeiro ◽  
A.X. Silva ◽  
D. Souza-Santos ◽  
P.P. Queiroz-Filho ◽  
...  

2020 ◽  
Vol 189 (2) ◽  
pp. 190-197 ◽  
Author(s):  
Serdar Charyyev ◽  
C-K Chris Wang

Abstract New technique is trending in spatially fractionated radiotherapy with protons to utilize the spot scanning together with a physical collimator to obtain minibeams. The primary goal of this study is to quantify ambient neutron dose equivalent (${H}^{\ast }(10)$) due to the secondary neutrons when physical collimator is used to achieve desired minibeams. The ${H}^{\ast }(10)$ per treatment proton dose (D) was assessed using Monte Carlo code TOPAS and measured using WENDI-II detector at different angles (135, 180, 225 and 270 degrees) and distances (11 cm, 58 and 105 cm) from the phantom for two cases: with and without physical collimation. Without collimation $\frac{H^{\ast }(10)}{D}$ varied from 0.0013 to 0.242 mSv/Gy. With collimation $\frac{H^{\ast }(10)}{D}$ varied from 0.017 to 3.23 mSv/Gy. Results show that the secondary neutron dose will increase tenfold when the physical collimator is used. Regardless, it will be low and comparable to the neutron dose produced by conventional passive-scattered proton beams.


2018 ◽  
Vol 56 ◽  
pp. 21-22
Author(s):  
T. Younes ◽  
A. Delbaere ◽  
M. Chauvin ◽  
L. Simon ◽  
G. Fares ◽  
...  

Author(s):  
Ю. Кураченко ◽  
Yu. Kurachenko ◽  
Н. Санжарова ◽  
N. Sanzharova ◽  
Г. Козьмин ◽  
...  

Purpose: This work aims first to improve the reliability of absorbed dose calculation in critical organs of cattle during internal irradiation immediately after radiation accidents by a) improving the compartmental model of radionuclide metabolism in animal body; b) the use of precision computing technologies for modeling as the domain, and the actual radiation transport. In addition, the aim of the work is to determine the agreed values of the 131I critical dose in the cattle thyroid, leading to serious gland dysfunction and its follow-up destruction. Material and methods: To achieve aforecited goals, comprehensive studies were carried out to specify the parameters of the compartmental model, based on reliable experimental and theoretical data. Voxel technologies were applied for modeling the subject domain (thyroid gland and its environment). Finally, to solve the 131I radiation transport equation, the Monte Carlo code was applied, which takes into account the contribution of gamma and beta radiation source, and the contribution of the entire chain of secondary radiations in the dose calculation, up to the total energy dissipation. Results: As the main theoretical result, it is necessary to emphasize the conversion factor from the 131I activity, distributed uniformly in volume of the thyroid gland, to the average dose rate in the gland (Bq × Gy/s). This factor was calculated for both cows and calves in the selected domain configuration and thyroid morphology. The main practical result is a reliable estimation the lower bound of the absorbed dose in the thyroid, which in a short time leads to its destruction under internal 131I irradiation: ~300 Gy. Conclusion: Usage a compartmental model of the 131I metabolism with biokinetic parameters, received on the basis of reliable experimental data, and precise models of both the subject area and radiation transport for evaluation the dose in the cattle thyroid after the radiation accident allowed to obtain reliable values of the thyroid dose, adducting to its destruction at short notice.


Sign in / Sign up

Export Citation Format

Share Document