scholarly journals Deuterons at energies of 10 MeV to 1 TeV: conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

2010 ◽  
Vol 143 (1) ◽  
pp. 17-26 ◽  
Author(s):  
K. Copeland ◽  
D. E. Parker ◽  
W. Friedberg
2020 ◽  
Vol 26 (1) ◽  
pp. 31-44
Author(s):  
Hassan Al Kanti ◽  
O. El Hajjaji ◽  
T. El Bardouni

AbstractThe present study aims to calculate a new database of conversion coefficients from fluence and air Kerma to personal dose equivalent in two terms: absorbed dose and Kerma-approximations. In this work, we propose a new equation to perform an analytical fit of our Monte Carlo (MC) calculated conversion coefficients for photons for different angles. Also, we have calculated the conversion coefficients using the EGSnrc code. The conversion coefficients have been calculated for beams of monoenergetic photons from 0.015 to 10 MeV, incident on phantom ICRU for angles of incidence from 0° to a 75° in steps of 15°. Our computed values agree well when compared with those published for the ICRU 57 in Kerma-approximations with statistical uncertainties in the calculation around 2%. We can conclude from this work that the analytical approach is successful and powerful such as Monte Carlo methods to calculate the operational quantities.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 107
Author(s):  
Fahad A. Zaman ◽  
Lawrence W. Townsend

Solar particle events (SPEs) can pose serious threats for future crewed missions to the Moon. Historically, there have been several extreme SPEs that could have been dangerous for astronauts, and thus analyzing their potential risk on humans is an important step towards space exploration. In this work, we study the effects of a well-known SPE that occurred on 23 February 1956 on a mission in cis-Lunar space. Estimates of the proton fluence spectra of the February 1956 event were obtained from three different parameterized models published within the past 12 years. The studied geometry consists of a female phantom in the center of spherical spacecraft shielded by aluminum area densities ranging from 0.4 to 40 g cm−2. The effective dose, along with lens, skin, blood forming organs, heart, and central nervous system doses, were tallied using the On Line Tool for the Assessment of Radiation In Space (OLTARIS), which utilizes the High Z and Energy TRansport code (HZETRN), a deterministic radiation transport code. Based on the parameterized models, the results herein show that thicknesses comparable to a spacesuit might not protect against severe health consequences from a February 1956 category event. They also show that a minimum aluminum shielding of around 20 g cm−2 is sufficient to keep the effective dose and critical organ doses below NASA’s permissible limits for such event. In addition, except for very thin shielding, the input models produced results that were within good agreement, where the doses obtained from the three proton fluence spectra tended to converge with slight differences as the shielding thickness increases.


Sign in / Sign up

Export Citation Format

Share Document