Influence of morphological tuned nanostructure hybrid layers on efficient bulk heterojunction organic solar cell and X-ray detector performances

2021 ◽  
Vol 543 ◽  
pp. 148863
Author(s):  
Dhanasekaran Vikraman ◽  
Hailiang Liu ◽  
Sajjad Hussain ◽  
K. Karuppasamy ◽  
Hae-Kyung Youi ◽  
...  
2013 ◽  
Vol 5 (16) ◽  
pp. 8225-8230 ◽  
Author(s):  
John R. Tumbleston ◽  
Abay Gadisa ◽  
Yingchi Liu ◽  
Brian A. Collins ◽  
Edward T. Samulski ◽  
...  

2017 ◽  
Vol 161 ◽  
pp. 102-148 ◽  
Author(s):  
Ramasamy Ganesamoorthy ◽  
Govindasamy Sathiyan ◽  
Pachagounder Sakthivel

Author(s):  
ENG KOK CHIEW ◽  
MUHAMMAD YAHAYA ◽  
AHMAD PUAAD OTHMAN

Photovoltaic performance of bulk heterojunction organic solar cell based on poly (3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) were investigated. The active layer is a spin coated organic blend of a p material (P3HT) and an n-material from the fullerene derivative PCBM; it is sandwiched between electrodes ITO-PEDOT/PSS and Al/LiF as back-contact. Modeling of organic bulk heterojunction solar cells is complicated because of various internal mechanisms involved. Two models have been suggested, namely an effective medium model and a network model. We applied an effective medium model where the main assumption is the p–n nanostructure is treated as one single effective semiconductor layer, and parameters in this configuration are fed into a standard solar cell device simulator, called SCAPS. In this model, other non-carrier related properties, such as the refractive index n, the dielectric constant ε and the absorption constant α are influenced by both p–n materials and used as input parameters. The power conversion efficiency of 3.88% with short circuit current density of 20.61 mA/cm2, open circuit voltage of 0.39 V and fill factor of 48% were obtained. Finally, factors which could limit cell conversion efficiency are discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Paik-Kyun Shin ◽  
Palanisamy Kumar ◽  
Abhirami Kumar ◽  
Santhakumar Kannappan ◽  
Shizuyasu Ochiai

Bulk heterojunction (BHJ) structure based active layers of PCDTBT/PC71BM were prepared by using different organic solvents for fabrication of organic solar cell (OSC) devices. Mixture of precursor solutions of PCDTBT/PC71BM in three different organic solvents was prepared to fabricate composite active layers by spin-coating process: chloroform; chlorobenzene; o-dichlorobenzene. Four different blend ratios (1 : 3–1 : 6) of PCDTBT: PC71BM were adopted for each organic solvent to clarify the effect on the resulting OSC device characteristics. Surface morphology of the active layers was distinctively affected by the blend ratio of PCDTBT/PC71BM in organic solvents. Influence of the blend ratio of PCDTBT/PC71BM on the OSC device parameters was discussed. Performance parameters of the resulting OSC devices with different composite active layers were comparatively investigated. Appropriate blend ratio and organic solvent to achieve better OSC device performance were proposed. Furthermore, from the UV-Vis spectrum of each active layer prepared using the PCDTBT/PC71BM mixed solution dissolved with different organic solvents, a possibility that the nanophase separation structure inside their active layer could appear was suggested.


2013 ◽  
Vol 24 (7) ◽  
pp. 2183-2188 ◽  
Author(s):  
Nasehah Syamin Sabri ◽  
Chi Chin Yap ◽  
Muhammad Yahaya ◽  
Muhamad Mat Salleh

Author(s):  
Gregory Kozyreff ◽  
Blaise Godefroid

We revisit the argument that link the efficiency of a solar cell to its reverse operation as a LED, in the case where the material is organic. In organic cells, exciton transport is an intermediate process between sunlight absorption and the generation of electric current. We show that quenching exciton radiation can be beneficial to cell efficiency, without contradicting the general rule prevailing for semiconductor cells. Our treatment allows us to discuss both bulk heterojunction and planar junctions.


Sign in / Sign up

Export Citation Format

Share Document