Spatial and temporal distribution of farmed Atlantic salmon after experimental release from sea cage sites in Newfoundland (Canada)

Aquaculture ◽  
2018 ◽  
Vol 492 ◽  
pp. 147-156 ◽  
Author(s):  
Dounia Hamoutene ◽  
David Cote ◽  
Kimberly Marshall ◽  
Sebastien Donnet ◽  
Shannon Cross ◽  
...  
Aquaculture ◽  
2018 ◽  
Vol 486 ◽  
pp. 122-129 ◽  
Author(s):  
David Solstorm ◽  
Tina Oldham ◽  
Frida Solstorm ◽  
Pascal Klebert ◽  
Lars Helge Stien ◽  
...  

2021 ◽  
Author(s):  
Patricia Rivera ◽  
José Gallardo ◽  
Cristian Araneda ◽  
Anti Vasemägi

The sexual maturation of Atlantic salmon Salmo salar is a multifactorial process in which fish acquire somatic characteristics to reproduce. In salmon farming has been described a high variability in the trait age at maturation derived from wild reproductive strategies. Early maturation is a phenotype that generates serious economic repercussions on both, sea cage and on land-based aquaculture systems. In view of the challenges of this problem for the global salmon farming industry, it is essential to thoroughly understand the influencing factors of early and late maturation to find efficient alternatives for managing the phenomenon. This review briefly describes sexual maturation in S. salar, its variability in cultures, and the factors influencing the maturation age trait at the physiological, genetic and environmental levels. The control of early maturity through changes to the natural photoperiod and through the use of genetic markers are discussed.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 414
Author(s):  
Joseph P. Nowlan ◽  
Scott R. Britney ◽  
John S. Lumsden ◽  
Spencer Russell

Tenacibaculum are frequently detected from fish with tenacibaculosis at aquaculture sites; however, information on the ecology of these bacteria is sparse. Quantitative-PCR assays were used to detect T. maritimum and T. dicentrarchi at commercial Atlantic salmon (Salmo salar) netpen sites throughout several tenacibaculosis outbreaks. T. dicentrarchi and T. maritimum were identified in live fish, dead fish, other organisms associated with netpens, water samples and on inanimate substrates, which indicates a ubiquitous distribution around stocked netpen sites. Before an outbreak, T. dicentrarchi was found throughout the environment and from fish, and T. maritimum was infrequently identified. During an outbreak, increases in the bacterial load in were recorded and no differences were recorded after an outbreak supporting the observed recrudescence of mouthrot. More bacteria were recorded in the summer months, with more mortality events and antibiotic treatments, indicating that seasonality may influence tenacibaculosis; however, outbreaks occurred in both seasons. Relationships were identified between fish mortalities and antimicrobial use to water quality parameters (temperature, salinity, dissolved oxygen) (p < 0.05), but with low R2 values (<0.25), other variables are also involved. Furthermore, Tenacibaculum species appear to have a ubiquitous spatial and temporal distribution around stocked netpen sites, and with the potential to induce disease in Atlantic salmon, continued research is needed.


Sign in / Sign up

Export Citation Format

Share Document