scholarly journals A novel screening method for the detection of Pseudoalteromonas shioyasakiensis, an emerging opportunistic pathogen that caused the mass mortality of juvenile Pacific abalone (Haliotis discus hannai) during a record-breaking heat wave

Aquaculture ◽  
2021 ◽  
pp. 737191
Author(s):  
Min Li ◽  
Wenwei Wu ◽  
Weiwei You ◽  
Shixin Huang ◽  
Miaoqin Huang ◽  
...  
Aquaculture ◽  
2021 ◽  
Vol 541 ◽  
pp. 736820
Author(s):  
Wenzhu Peng ◽  
Feng Yu ◽  
Yiyu Wu ◽  
Yifang Zhang ◽  
Chengkuan Lu ◽  
...  

2022 ◽  
Vol 23 (2) ◽  
pp. 698
Author(s):  
Mi-Jin Choi ◽  
Yeo Reum Kim ◽  
Nam Gyu Park ◽  
Cheorl-Ho Kim ◽  
Young Dae Oh ◽  
...  

Genes that influence the growth of Pacific abalone (Haliotis discus hannai) may improve the productivity of the aquaculture industry. Previous research demonstrated that the differential expression of a gene encoding a C-type lectin domain-containing protein (CTLD) was associated with a faster growth in Pacific abalone. We analyzed this gene and identified an open reading frame that consisted of 145 amino acids. The sequence showed a significant homology to other genes that encode CTLDs in the genus Haliotis. Expression profiling analysis at different developmental stages and from various tissues showed that the gene was first expressed at approximately 50 days after fertilization (shell length of 2.47 ± 0.13 mm). In adult Pacific abalone, the gene was strongly expressed in the epipodium, gill, and mantle. Recombinant Pacific abalone CTLD purified from Escherichia coli exhibited antimicrobial activity against several Gram-positive bacteria (Bacillus subtilis, Streptococcus iniae, and Lactococcus garvieae) and Gram-negative bacteria (Vibrio alginolyticus and Vibrio harveyi). We also performed bacterial agglutination assays in the presence of Ca2+, as well as bacterial binding assays in the presence of the detergent dodecyl maltoside. Incubation with E. coli and B. subtilis cells suggested that the CTLD stimulated Ca2+-dependent bacterial agglutination. Our results suggest that this novel Pacific abalone CTLD is important for the pathogen recognition in the gastropod host defense mechanism.


2020 ◽  
Vol 42 (10) ◽  
pp. 1179-1188
Author(s):  
Mi Ae Kim ◽  
Tae Ha Kim ◽  
Sora Lee ◽  
Bo-Hye Nam ◽  
Jung Sick Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document