opportunistic pathogen
Recently Published Documents





Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 208
Andrea Sanchini

Staphylococcus aureus is an opportunistic pathogen responsible for a wide range of infections in humans, such as skin and soft tissue infections, pneumonia, food poisoning or sepsis. Historically, S. aureus was able to rapidly adapt to anti-staphylococcal antibiotics and become resistant to several classes of antibiotics. Today, methicillin-resistant S. aureus (MRSA) is a multidrug-resistant pathogen and is one of the most common bacteria responsible for hospital-acquired infections and outbreaks, in community settings as well. The rapid and accurate diagnosis of antimicrobial resistance in S. aureus is crucial to the early initiation of directed antibiotic therapy and to improve clinical outcomes for patients. In this narrative review, I provide an overview of recent phenotypic and molecular diagnostic methods for antimicrobial resistance detection in S. aureus, with a particular focus on MRSA detection. I consider methods for resistance detection in both clinical samples and isolated S. aureus cultures, along with a brief discussion of the advantages and the challenges of implementing such methods in routine diagnostics.

2022 ◽  
Tina I Bui ◽  
Ann Lindley Gill ◽  
Robert A Mooney ◽  
Steven R Gill

Staphylococcus aureus is an opportunistic pathogen causing osteomyelitis through hematogenous seeding or contamination of implants and open wounds following orthopedic surgeries. The severity of S. aureus-mediated osteomyelitis is enhanced in obesity-related type 2 diabetes (obesity/T2D) due to chronic inflammation impairing both adaptive and innate immunity. Obesity-induced inflammation is linked to gut dysbiosis, with modification of the gut microbiota by high-fiber diets leading to a reduction in the symptoms and complications of obesity/T2D. However, our understanding of the mechanisms by which modifications of the gut microbiota alter host infection responses is limited. To address this gap, we monitored tibial S. aureus infections in obese/T2D mice treated with the inulin-like fructan fiber, oligofructose. Treatment with oligofructose significantly decreased S. aureus colonization and lowered proinflammatory signaling post-infection in obese/T2D mice, as observed by decreased circulating inflammatory cytokines (TNF-α) and chemokines (IP-10, KC, MIG, MCP-1, and RANTES), indicating partial reduction in inflammation. Oligofructose markedly shifted diversity in the gut microbiota of obese/T2D mice mice, with notable increases in the anti-inflammatory bacterium, Bifidobacterium pseudolongum. Analysis of the cecum and plasma metabolome suggested polyamine production was increased, specifically spermine and spermidine. Oral administration of these polyamines to obese/T2D mice resulted in reduced infection severity similar to oligofructose supplementation, suggesting polyamines can mediate the beneficial effects of fiber on osteomyelitis severity. These results demonstrate the contribution of gut microbiota metabolites to the control of bacterial infections distal to the gut and polyamines as an adjunct therapeutic for osteomyelitis in obesity/T2D.

Vicky Bronnec ◽  
Hinnerk Eilers ◽  
Anika C. Jahns ◽  
Hélène Omer ◽  
Oleg A. Alexeyev

Acne vulgaris is the most common dermatological disorder worldwide affecting more than 80% of adolescents and young adults with a global prevalence of 231 million cases in 2019. The involvement of the skin microbiome disbalance in the pathophysiology of acne is recognized, especially regarding the relative abundance and diversity of Propionibacterium acnes a well-known dominant human skin commensal. Biofilms, where bacteria are embedded into a protective polymeric extracellular matrix, are the most prevalent life style for microorganisms. P. acnes and its biofilm-forming ability is believed to be a contributing factor in the development of acne vulgaris, the persistence of the opportunistic pathogen and antibiotic therapy failures. Degradation of the extracellular matrix is one of the strategies used by bacteria to disperse the biofilm of competitors. In this study, we report the identification of an endogenous extracellular nuclease, BmdE, secreted by Propionibacterium granulosum able to degrade P. acnes biofilm both in vivo and in vitro. This, to our knowledge, may represent a novel competitive mechanism between two closely related species in the skin. Antibiotics targeting P. acnes have been the mainstay in acne treatment. Extensive and long-term use of antibiotics has led to the selection and spread of resistant bacteria. The extracellular DNase BmdE may represent a new bio-therapeutical strategy to combat P. acnes biofilm in acne vulgaris.

Wai Leong ◽  
Wee Han Poh ◽  
Jonathan Williams ◽  
Carla Lutz ◽  
M. Mozammel Hoque ◽  

The opportunistic pathogen Pseudomonas aeruginosa , is ubiquitous in the environment, and in humans is capable of causing acute or chronic infections. In the natural environment, predation by bacterivorous protozoa represents a primary threat to bacteria. Here, we determined the impact of long-term exposure of P. aeruginosa to predation pressure. P. aeruginosa persisted when co-incubated with the bacterivorous Acanthamoeba castellanii for extended periods and produced genetic and phenotypic variants. Sequencing of late-stage amoeba-adapted P. aeruginosa isolates demonstrated single nucleotide polymorphisms within genes that encode known virulence factors and this correlated with a reduction in expression of virulence traits. Virulence towards the nematode, Caenorhabditis elegans , was attenuated in late-stage amoeba-adapted P. aeruginosa compared to early-stage amoeba-adapted and non-adapted counterparts. Further, late-stage amoeba-adapted P. aeruginosa showed increased competitive fitness and enhanced survival in amoeba as well as in macrophage and neutrophils. Interestingly, our findings indicate that the selection imposed by amoeba resulted in P. aeruginosa isolates with reduced virulence and enhanced fitness, similar to those recovered from chronic cystic fibrosis infections. Thus, predation by protozoa and long-term colonization of the human host may represent similar environments that select for similar losses of gene function. Importance Pseudomonas aeruginosa is an opportunistic pathogen that causes both acute infections in plants and animals, including humans, and chronic infections in immunocompromised and cystic fibrosis patients. This bacterium is commonly found in soils and water where bacteria are constantly under threat of being consumed by bacterial predators, e.g. protozoa. To escape being killed, bacteria have evolved a suite of mechanisms that protect them from being consumed or digested. Here, we examine the effect of long-term predation on the genotypes and phenotypes expressed by P. aeruginosa . We show that long term co-incubation with protozoa resulted in mutations that resulted in P. aeruginosa becoming less pathogenic. This is particularly interesting as we see similar mutations arise in bacteria associated with chronic infections. Importantly, the genetic and phenotypic traits possessed by late-stage amoeba-adapted P. aeruginosa are similar to what is observed for isolates obtained from chronic cystic fibrosis infections. This notable overlap in adaptation to different host types suggests similar selection pressures amongst host cell types as well as similar adaptation strategies.

2022 ◽  
Vol 13 (1) ◽  
Lukas Gajdos ◽  
Matthew P. Blakeley ◽  
Michael Haertlein ◽  
V. Trevor Forsyth ◽  
Juliette M. Devos ◽  

AbstractThe opportunistic pathogen Pseudomonas aeruginosa, a major cause of nosocomial infections, uses carbohydrate-binding proteins (lectins) as part of its binding to host cells. The fucose-binding lectin, LecB, displays a unique carbohydrate-binding site that incorporates two closely located calcium ions bridging between the ligand and protein, providing specificity and unusually high affinity. Here, we investigate the mechanisms involved in binding based on neutron crystallography studies of a fully deuterated LecB/fucose/calcium complex. The neutron structure, which includes the positions of all the hydrogen atoms, reveals that the high affinity of binding may be related to the occurrence of a low-barrier hydrogen bond induced by the proximity of the two calcium ions, the presence of coordination rings between the sugar, calcium and LecB, and the dynamic behaviour of bridging water molecules at room temperature. These key structural details may assist in the design of anti-adhesive compounds to combat multi-resistance bacterial infections.

Baopeng Yang ◽  
Yujun Jiang ◽  
Yongxin Jin ◽  
Fang Bai ◽  
Zhihui Cheng ◽  

Polymyxins are considered as the last resort antibiotics to treat infections caused by multidrug-resistant Gram negative pathogens. Pseudomonas aeruginosa is an opportunistic pathogen that causes various infections in humans. Proteins involved in lipopolysaccharide modification and maintaining inner and outer membrane integrities have been found to contribute to the bacterial resistance to polymyxins. Oligoribonuclease (Orn) is an exonuclease that regulates the homeostasis of intracellular (3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), thereby regulating the production of extracellular polysaccharide in P. aeruginosa . Previously, we demonstrated that Orn affects the bacterial resistance to fluoroquinolone, β-lactam and aminoglycoside antibiotics. In this study, we found that mutation of orn increased the bacterial survival following polymyxin B treatment in a wild type P. aeruginosa strain PA14. Overexpression of c-di-GMP degradation enzymes in the orn mutant reduced the bacterial survival. By using a fluorescence labeled polymyxin B, we found that mutation of orn increased the bacterial surface bound polymyxin B. Deletion of the Pel synthesis genes or treatment with a Pel hydrolase reduced the surface bound polymyxin B and bacterial survival. We further demonstrated that Pel binds to extracellular DNA (eDNA), which traps polymyxin B and thus protects the bacterial cells. Collectively, our results revealed a novel defense mechanism against polymyxin in P. aeruginosa .

2022 ◽  
Vol 53 (1) ◽  
Yuru Guo ◽  
Chengcheng Huang ◽  
Hongyu Su ◽  
Zehui Zhang ◽  
Menghan Chen ◽  

AbstractTrueperella pyogenes (T. pyogenes) is an opportunistic pathogen associated with a variety of diseases in many domestic animals. Therapeutic treatment options for T. pyogenes infections are becoming limited due to antimicrobial resistance, in which efflux pumps play an important role. This study aims to evaluate the inhibitory activity of luteolin, a natural flavonoid, on the MsrA efflux pump and investigate its mechanism. The results of antimicrobial susceptibility testing indicated that the susceptibility of msrA-positive T. pyogenes isolates to six macrolides increased after luteolin treatment, while the susceptibility of msrA-negative isolates showed no change after luteolin treatment. It is suspected that luteolin may increase the susceptibility of T. pyogenes isolates by inhibiting MsrA activity. After 1/2 MIC luteolin treatment for 36 h, the transcription level of the msrA gene and the expression level of the MsrA protein decreased by 55.0–97.7% and 36.5–71.5%, respectively. The results of an affinity test showed that the equilibrium dissociation constant (KD) of luteolin and MsrA was 6.462 × 10–5 M, and hydrogen bonding was predominant in the interaction of luteolin and MsrA. Luteolin may inhibit the ATPase activity of the MsrA protein, resulting in its lack of an energy source. The current study illustrates the effect of luteolin on MsrA in T. pyogenes isolates and provides insight into the development of luteolin as an innovative agent in combating infections caused by antimicrobial-resistant bacteria.

2022 ◽  
Vol 12 ◽  
Bridget S. Fisher ◽  
Katherine A. Fancher ◽  
Andrew T. Gustin ◽  
Cole Fisher ◽  
Matthew P. Wood ◽  

Liver disease is a significant contributor to morbidity and mortality in HIV-infected individuals, even during successful viral suppression with combination antiretroviral therapy (cART). Similar to HIV infection, SIV infection of rhesus macaques is associated with gut microbiome dysbiosis and microbial translocation that can be detected systemically in the blood. As microbes leaving the intestines must first pass through the liver via the portal vein, we evaluated the livers of both SIV-infected (SIV+) and SIV-infected cART treated (SIV+cART) rhesus macaques for evidence of microbial changes compared to uninfected macaques. Dysbiosis was observed in both the SIV+ and SIV+cART macaques, encompassing changes in the relative abundance of several genera, including a reduction in the levels of Lactobacillus and Staphylococcus. Most strikingly, we found an increase in the relative abundance and absolute quantity of bacteria within the Mycobacterium genus in both SIV+ and SIV+cART macaques. Multi-gene sequencing identified a species of atypical mycobacteria similar to the opportunistic pathogen M. smegmatis. Phosphatidyl inositol lipoarabinomannan (PILAM) (a glycolipid cell wall component found in atypical mycobacteria) stimulation in primary human hepatocytes resulted in an upregulation of inflammatory transcriptional responses, including an increase in the chemokines associated with neutrophil recruitment (CXCL1, CXCL5, and CXCL6). These studies provide key insights into SIV associated changes in hepatic microbial composition and indicate a link between microbial components and immune cell recruitment in SIV+ and SIV+cART treated macaques.

2022 ◽  
Vol 18 (1) ◽  
pp. e1010192
Mengli Yang ◽  
Norma V. Solis ◽  
Michaela Marshall ◽  
Rachel Garleb ◽  
Tingting Zhou ◽  

Candida albicans is a major opportunistic pathogen of humans. It can grow as morphologically distinct yeast, pseudohyphae and hyphae, and the ability to switch reversibly among different forms is critical for its virulence. The relationship between morphogenesis and innate immune recognition is not quite clear. Dectin-1 is a major C-type lectin receptor that recognizes β-glucan in the fungal cell wall. C. albicans β-glucan is usually masked by the outer mannan layer of the cell wall. Whether and how β-glucan masking is differentially regulated during hyphal morphogenesis is not fully understood. Here we show that the endo-1,3-glucanase Eng1 is differentially expressed in yeast, and together with Yeast Wall Protein 1 (Ywp1), regulates β-glucan exposure and Dectin-1-dependent immune activation of macrophage by yeast cells. ENG1 deletion results in enhanced Dectin-1 binding at the septa of yeast cells; while eng1 ywp1 yeast cells show strong overall Dectin-1 binding similar to hyphae of wild-type and eng1 mutants. Correlatively, hyphae of wild-type and eng1 induced similar levels of cytokines in macrophage. ENG1 expression and Eng1-mediated β-glucan trimming are also regulated by antifungal drugs, lactate and N-acetylglucosamine. Deletion of ENG1 modulates virulence in the mouse model of hematogenously disseminated candidiasis in a Dectin-1-dependent manner. The eng1 mutant exhibited attenuated lethality in male mice, but enhanced lethality in female mice, which was associated with a stronger renal immune response and lower fungal burden. Thus, Eng1-regulated β-glucan exposure in yeast cells modulates the balance between immune protection and immunopathogenesis during disseminated candidiasis.

2022 ◽  
Vol 22 (1) ◽  
Shamima Nasrin ◽  
Nicolas Hegerle ◽  
Shaichi Sen ◽  
Joseph Nkeze ◽  
Sunil Sen ◽  

Abstract Background Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of acute and chronic infections and is frequently associated with healthcare-associated infections. Because of its ability to rapidly acquire resistance to antibiotics, P. aeruginosa infections are difficult to treat. Alternative strategies, such as a vaccine, are needed to prevent infections. We collected a total of 413 P. aeruginosa isolates from the blood and cerebrospinal fluid of patients from 10 countries located on 4 continents during 2005–2017 and characterized these isolates to inform vaccine development efforts. We determined the diversity and distribution of O antigen and flagellin types and antibiotic susceptibility of the invasive P. aeruginosa. We used an antibody-based agglutination assay and PCR for O antigen typing and PCR for flagellin typing. We determined antibiotic susceptibility using the Kirby-Bauer disk diffusion method. Results Of the 413 isolates, 314 (95%) were typed by an antibody-based agglutination assay or PCR (n = 99). Among the 20 serotypes of P. aeruginosa, the most common serotypes were O1, O2, O3, O4, O5, O6, O8, O9, O10 and O11; a vaccine that targets these 10 serotypes would confer protection against more than 80% of invasive P. aeruginosa infections. The most common flagellin type among 386 isolates was FlaB (41%). Resistance to aztreonam (56%) was most common, followed by levofloxacin (42%). We also found that 22% of strains were non-susceptible to meropenem and piperacillin-tazobactam. Ninety-nine (27%) of our collected isolates were resistant to multiple antibiotics. Isolates with FlaA2 flagellin were more commonly multidrug resistant (p = 0.04). Conclusions Vaccines targeting common O antigens and two flagellin antigens, FlaB and FlaA2, would offer an excellent strategy to prevent P. aeruginosa invasive infections.

Sign in / Sign up

Export Citation Format

Share Document