developmental stages
Recently Published Documents


TOTAL DOCUMENTS

8331
(FIVE YEARS 2795)

H-INDEX

111
(FIVE YEARS 13)

2023 ◽  
Vol 83 ◽  
Author(s):  
F. Shafique ◽  
S. Ali ◽  
T. Almansouri ◽  
F. Van Eeden ◽  
N. Shafi ◽  
...  

Abstract A group of inherited blood defects is known as Thalassemia is among the world’s most prevalent hemoglobinopathies. Thalassemias are of two types such as Alpha and Beta Thalassemia. The cause of these defects is gene mutations leading to low levels and/or malfunctioning α and β globin proteins, respectively. In some cases, one of these proteins may be completely absent. α and β globin chains form a globin fold or pocket for heme (Fe++) attachment to carry oxygen. Genes for alpha and beta-globin proteins are present in the form of a cluster on chromosome 16 and 11, respectively. Different globin genes are used at different stages in the life course. During embryonic and fetal developmental stages, γ globin proteins partner with α globin and are later replaced by β globin protein. Globin chain imbalances result in hemolysis and impede erythropoiesis. Individuals showing mild symptoms include carriers of alpha thalassemia or the people bearing alpha or beta-thalassemia trait. Alpha thalassemia causes conditions like hemolytic anemia or fatal hydrops fetalis depending upon the severity of the disease. Beta thalassemia major results in hemolytic anemia, growth retardation, and skeletal aberrations in early childhood. Children affected by this disorder need regular blood transfusions throughout their lives. Patients that depend on blood transfusion usually develop iron overload that causes other complications in the body systems like renal or hepatic impairment therefore, thalassemias are now categorized as a syndrome. The only cure for Thalassemias would be a bone marrow transplant, or gene therapy with currently no significant success rate. A thorough understanding of the molecular basis of this syndrome may provide novel insights and ideas for its treatment, as scientists have still been unable to find a permanent cure for this deadly disease after more than 87 years since it is first described in 1925.


2022 ◽  
Vol 807 ◽  
pp. 150697
Author(s):  
Libe Aranguren-Abadía ◽  
Fekadu Yadetie ◽  
Carey E. Donald ◽  
Elin Sørhus ◽  
Lars Eirik Myklatun ◽  
...  

2022 ◽  
Vol 22 ◽  
pp. 100974
Author(s):  
Chaonan Zhang ◽  
Zhengkun Pan ◽  
Shaodan Wang ◽  
Guohuan Xu ◽  
Jixing Zou

2022 ◽  
Vol 23 (2) ◽  
pp. 873
Author(s):  
Deepani D. Fernando ◽  
Pasi K. Korhonen ◽  
Robin B. Gasser ◽  
Katja Fischer

In a quest for new interventions against scabies—a highly significant skin disease of mammals, caused by a parasitic mite Sarcoptes scabiei—we are focusing on finding new intervention targets. RNA interference (RNAi) could be an efficient functional genomics approach to identify such targets. The RNAi pathway is present in S. scabiei and operational in the female adult mite, but other developmental stages have not been assessed. Identifying potential intervention targets in the egg stage is particularly important because current treatments do not kill this latter stage. Here, we established an RNAi tool to silence single-copy genes in S. scabiei eggs. Using sodium hypochlorite pre-treatment, we succeeded in rendering the eggshell permeable to dsRNA without affecting larval hatching. We optimised the treatment of eggs with gene-specific dsRNAs to three single-copy target genes (designated Ss-Cof, Ss-Ddp, and Ss-Nan) which significantly and repeatedly suppressed transcription by ~66.6%, 74.3%, and 84.1%, respectively. Although no phenotypic alterations were detected in dsRNA-treated eggs for Ss-Cof and Ss-Nan, the silencing of Ss-Ddp resulted in a 38% reduction of larval hatching. This RNAi method is expected to provide a useful tool for larger-scale functional genomic investigations for the identification of essential genes as potential drug targets.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuichi Takeuchi ◽  
Yuna Higuchi ◽  
Koki Ikeya ◽  
Masataka Tagami ◽  
Yoichi Oda

AbstractBehavioral laterality—typically represented by human handedness—is widely observed among animals. However, how laterality is acquired during development remains largely unknown. Here, we examined the effect of behavioral experience on the acquisition of lateralized predation at different developmental stages of the scale-eating cichlid fish Perissodus microlepis. Naïve juvenile fish without previous scale-eating experience showed motivated attacks on prey goldfish and an innate attack side preference. Following short-term predation experience, naïve juveniles learned a pronounced lateralized attack using their slightly skewed mouth morphology, and improved the velocity and amplitude of body flexion to succeed in foraging scales during dominant-side attack. Naïve young fish, however, did not improve the dynamics of flexion movement, but progressively developed attack side preference and speed to approach the prey through predation experience. Thus, the cichlid learns different aspects of predation behavior at different developmental stages. In contrast, naïve adults lost the inherent laterality, and they neither developed the lateralized motions nor increased their success rate of predation, indicating that they missed appropriate learning opportunities for scale-eating skills. Therefore, we conclude that behavioral laterality of the cichlid fish requires the integration of genetic basis and behavioral experiences during early developmental stages, immediately after they start scale-eating.


2022 ◽  
Vol 23 (2) ◽  
pp. 822
Author(s):  
Yu He ◽  
Ruifan Chen ◽  
Ying Yang ◽  
Guichan Liang ◽  
Heng Zhang ◽  
...  

Camellia oleifera is a widely planted woody oil crop with economic significance because it does not occupy cultivated land. The sugar-derived acetyl-CoA is the basic building block in fatty acid synthesis and oil synthesis in C. oleifera fruit; however, sugar metabolism in this species is uncharacterized. Herein, the changes in sugar content and metabolic enzyme activity and the transcriptomic changes during C. oleifera fruit development were determined in four developmental stages (CR6: young fruit formation; CR7: expansion; CR9: oil transformation; CR10: ripening). CR7 was the key period of sugar metabolism since it had the highest amount of soluble sugar, sucrose, and glucose with a high expression of genes related to sugar transport (four sucrose transporters (SUTs) or and one SWEET-like gene, also known as a sugar, will eventually be exported transporters) and metabolism. The significant positive correlation between their expression and sucrose content suggests that they may be the key genes responsible for sucrose transport and content maintenance. Significantly differentially expressed genes enriched in the starch and sucrose metabolism pathway were observed in the CR6 versus CR10 stages according to KEGG annotation. The 26 enriched candidate genes related to sucrose metabolism provide a molecular basis for further sugar metabolism studies in C. oleifera fruit.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 130
Author(s):  
Setu Chakraborty ◽  
Nardos T. Woldemariam ◽  
Tina Visnovska ◽  
Matthew L. Rise ◽  
Danny Boyce ◽  
...  

MicroRNAs (miRNAs) are endogenous small RNA molecules involved in the post-transcriptional regulation of protein expression by binding to the mRNA of target genes. They are key regulators in teleost development, maintenance of tissue-specific functions, and immune responses. Lumpfish (Cyclopterus lumpus) is becoming an emergent aquaculture species as it has been utilized as a cleaner fish to biocontrol sea lice (e.g., Lepeophtheirus salmonis) infestation in the Atlantic Salmon (Salmo salar) aquaculture. The lumpfish miRNAs repertoire is unknown. This study identified and characterized miRNA encoding genes in lumpfish from three developmental stages (adult, embryos, and larvae). A total of 16 samples from six different adult lumpfish organs (spleen, liver, head kidney, brain, muscle, and gill), embryos, and larvae were individually small RNA sequenced. Altogether, 391 conserved miRNA precursor sequences (discovered in the majority of teleost fish species reported in miRbase), eight novel miRNA precursor sequences (so far only discovered in lumpfish), and 443 unique mature miRNAs were identified. Transcriptomics analysis suggested organ-specific and age-specific expression of miRNAs (e.g., miR-122-1-5p specific of the liver). Most of the miRNAs found in lumpfish are conserved in teleost and higher vertebrates, suggesting an essential and common role across teleost and higher vertebrates. This study is the first miRNA characterization of lumpfish that provides the reference miRNAome for future functional studies.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 108
Author(s):  
Yuzhang Yang ◽  
Jing Wang ◽  
Chun Wang ◽  
Hui Chen ◽  
Yanping Liu ◽  
...  

Gleditsia sinensis Lam. is a tree with worldwide distribution and important economic and medicinal values; its pods contain terpenoids including gleditsioside, thiamine, and brassinosteroids. However, thus far, there are few studies on the terpenoid regulation of G. sinensis at the molecular level. microRNA (miRNA) is a class of small RNAs with conserved and crucial roles in the regulation of diverse biological processes during plant growth and development. To identify the miRNAs of G. sinensis and evaluate their involvement in terpenoid synthesis, this investigation quantified the content changes in saponins in pods at three developmental stages: May (pod-setting stage), July (elongation stage), and September (browning stage), and then we performed genome-wide miRNA profiles during the three development stages of the G. sinensis pods. A total of 351 conserved miRNAs belonging to 216 families were identified, among which 36 conserved miRNAs exist specifically in legumes. Through target analysis, 708 unigenes were predicted to be candidate targets of 37 differentially expressed miRNAs. The targets of miR838-3p and miR2093-5p were involved in the derived branches of monoterpenes and gleditsioside, in brassinosteroid biosynthesis (BRB), and in indole alkaloid biosynthesis (IAB). Intriguingly, the targets of miR829-3p.1 were predicted to take part in thiamine biosynthesis, and the targets of miR4414b and miR5037a were involved in the main process of cytokinin synthesis. The corresponding targets participated in BRB, IAB, and terpenoid backbone biosynthesis, which were enriched significantly, suggesting that miR2093-5p, miR4414b, miR5037a, miR829-3p.1, and miR838-3p play indispensable roles in the regulation of triterpenoid saponin and monoterpenoid biosynthesis. To date, this is the first report of miRNA identification in G. sinensis and miRNA expression profiles at different developmental stages of G. sinensis pods, which provides a basis for further uncovering the molecular regulation of terpenoid synthesis in G. sinensis and new insights into the role of miRNAs in legumes.


Sign in / Sign up

Export Citation Format

Share Document