A novel differential evolution mapping technique for generic combinatorial optimization problems

2019 ◽  
Vol 80 ◽  
pp. 297-309 ◽  
Author(s):  
Ismail M. Ali ◽  
Daryl Essam ◽  
Kathryn Kasmarik
2010 ◽  
Vol 1 (2) ◽  
pp. 15-32 ◽  
Author(s):  
Ricardo Sérgio Prado ◽  
Rodrigo César Pedrosa Silva ◽  
Frederico Gadelha Guimarães ◽  
Oriane Magela Neto

The Differential Evolution (DE) algorithm is an important and powerful evolutionary optimizer in the context of continuous numerical optimization. Recently, some authors have proposed adaptations of its differential mutation mechanism to deal with combinatorial optimization, in particular permutation-based integer combinatorial problems. In this paper, the authors propose a novel and general DE-based metaheuristic that preserves its interesting search mechanism for discrete domains by defining the difference between two candidate solutions as a list of movements in the search space. In this way, the authors produce a more meaningful and general differential mutation for the context of combinatorial optimization problems. The movements in the list can then be applied to other candidate solutions in the population as required by the differential mutation operator. This paper presents results on instances of the Travelling Salesman Problem (TSP) and the N-Queen Problem (NQP) that suggest the adequacy of the proposed approach for adapting the differential mutation to discrete optimization.


Sign in / Sign up

Export Citation Format

Share Document