Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach

2020 ◽  
Vol 66 (7) ◽  
pp. 1659-1671 ◽  
Author(s):  
Syed Muhammad Amrr ◽  
M. Nabi
Author(s):  
Qun Zong ◽  
Xiuyun Zhang ◽  
Shikai Shao ◽  
Bailing Tian ◽  
Wenjing Liu

In this paper, finite-time fault-tolerant attitude tracking control is investigated for rigid spacecraft system with external disturbances, inertia uncertainties and actuator faults. A novel finite-time disturbance observer combined with a nonsingular terminal sliding mode controller is developed. Using an equivalent output error injection approach, a finite-time disturbance observer with simple structure is firstly designed to estimate lumped uncertainty. Then, to remove the requirement of prior knowledge about lumped uncertainty and reduce chattering, an adaptive finite-time disturbance observer is further proposed, and the estimations converge to the neighborhood of the true values. Based on the designed observer, a unified finite-time attitude controller is obtained automatically. Finally, both additive and multiplicative faults are considered for simulations and the results illustrate the great fault-tolerant capability of the proposed scheme.


Author(s):  
Syed Muhammad Amrr ◽  
M Nabi ◽  
Pyare Mohan Tiwari

This paper investigates the application of an integral sliding mode control with a robust nonlinear disturbance observer to obtain an anti-unwinding spacecraft attitude tracking response with robustness against external disturbances, inertia matrix uncertainties, and actuator faults. In the controller design, external disturbances, uncertainties, and actuator faults are lumped together and estimated by the robust nonlinear disturbance observer. The proposed robust nonlinear disturbance observer guarantees the convergence of estimated lumped disturbance error to origin in finite time. The estimated disturbance is then used in the controller as a feed-forward compensator. Further, an adaptive law is also incorporated in the proposed controller to ensure additional robustness. The stability of the overall system and anti-unwinding characteristic are proved using the Lyapunov stability theory. Finally, numerical simulation analysis is performed in the presence of all the sources of lumped disturbances. It is observed that the proposed control strategy is ensuring higher accuracy, good steady-state precision, and eliminates the unwinding phenomenon.


Author(s):  
Bing Huang ◽  
Ai-jun Li ◽  
Yong Guo ◽  
Chang-qing Wang ◽  
Jin-hua Guo

This paper investigates the finite-time attitude tracking control problem for spacecraft in the presence of external disturbances and actuator faults. Two anti-unwinding attitude tracking control schemes have been proposed based on the rotation matrix and sliding mode control technology. Utilizing a fast terminal sliding mode surface, the first controller can fulfill the finite-time attitude tracking control task with disturbance rejection ability. The second controller can improve the system reliability when the actuator fault occurs. Rigorous mathematical analysis and proof concludes that the proposed controllers can make a spacecraft track the desired attitude command in finite time. Numerical simulation results are presented to demonstrate the effectiveness of the proposed controllers.


2020 ◽  
Vol 31 (6) ◽  
pp. 1274-1285
Author(s):  
Shi Zhen ◽  
Xie Yaen ◽  
Deng Chengchen ◽  
Zhao Kun ◽  
He Yushan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document