Collision avoidance control for formation flying of multiple spacecraft using artificial potential field

Author(s):  
Jiyoon Hwang ◽  
Jinah Lee ◽  
Chandeok Park
2020 ◽  
Vol 73 (6) ◽  
pp. 1306-1325
Author(s):  
Xinli Xu ◽  
Wei Pan ◽  
Yubo Huang ◽  
Weidong Zhang

A dynamic collision avoidance algorithm via layered artificial potential field with collision cone (LAPF-CC) is proposed to overcome the shortcomings of the traditional artificial potential field method in dynamic collision avoidance. In order to reduce invalid actions for collision avoidance, the potential field is divided into four layers, and a collision cone with risk detection function is introduced. Relative distance and relative velocity are used as variables to establish the risk of collision, and a torque named ‘speed torque’ is constructed. Speed torque, attractive force and repulsive force work together to change the speed and heading of the unmanned surface vehicle (USV). Driving force and torque are controlled separately, which makes it possible for the LAPF-CC algorithm to be used for real-time collision avoidance control of underactuated USVs. Simulation results show that the LAPF-CC algorithm performs well in dynamic collision avoidance.


Author(s):  
Jinghua Guo ◽  
Yugong Luo ◽  
Keqiang Li

This article presents a novel coordinated nonlinear adaptive backstepping collision avoidance control strategy for autonomous ground vehicles with uncertain and unmodeled terms. A nonlinear vehicle collision avoidance vehicle model which describes the coupled lateral and longitudinal dynamic features of autonomous ground vehicles is constructed. Then, a modified artificial potential field approach which can ensure that the total potential field of the target is goal minimum, is proposed to produce a collision-free trajectory for autonomous ground vehicles in real-time. Furthermore, in order to handle with the features of coupled and parameter uncertainties of autonomous ground vehicles, an adaptive neural network–based backstepping trajectory tracking control approach is proposed for collision avoidance control system of autonomous ground vehicles, and the stability of this proposed control system is proven by the Lyapunov theory. Finally, the co-simulation and experimental tests are implemented and the results show that the proposed collision avoidance control strategy has excellent tracking performance.


2020 ◽  
Author(s):  
Weishun Deng ◽  
Kaijiong Zhang ◽  
Xi Zhang ◽  
Fan Yu ◽  
Shiliang Shang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document