artificial potential field method
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 68)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zheng Fang ◽  
Xifeng Liang

Purpose The results of obstacle avoidance path planning for the manipulator using artificial potential field (APF) method contain a large number of path nodes, which reduce the efficiency of manipulators. This paper aims to propose a new intelligent obstacle avoidance path planning method for picking robot to improve the efficiency of manipulators. Design/methodology/approach To improve the efficiency of the robot, this paper proposes a new intelligent obstacle avoidance path planning method for picking robot. In this method, we present a snake-tongue algorithm based on slope-type potential field and combine the snake-tongue algorithm with genetic algorithm (GA) and reinforcement learning (RL) to reduce the path length and the number of path nodes in the path planning results. Findings Simulation experiments were conducted with tomato string picking manipulator. The results showed that the path length is reduced from 4.1 to 2.979 m, the number of nodes is reduced from 31 to 3 and the working time of the robot is reduced from 87.35 to 37.12 s, after APF method combined with GA and RL. Originality/value This paper proposes a new improved method of APF, and combines it with GA and RL. The experimental results show that the new intelligent obstacle avoidance path planning method proposed in this paper is beneficial to improve the efficiency of the robotic arm. Graphical abstract Figure 1 According to principles of bionics, we propose a new path search method, snake-tongue algorithm, based on a slope-type potential field. At the same time, we use genetic algorithm to strengthen the ability of the artificial potential field method for path searching, so that it can complete the path searching in a variety of complex obstacle distribution situations with shorter path searching results. Reinforcement learning is used to reduce the number of path nodes, which is good for improving the efficiency of robot work. The use of genetic algorithm and reinforcement learning lays the foundation for intelligent control.


2021 ◽  
Vol 16 ◽  
Author(s):  
Hongxin Zhang ◽  
Jiaming Li ◽  
Rongzijun Shu ◽  
Hongyu Wang ◽  
Guangsen Li

Background: With the development of robotics, more and more robots are used in manufacturing. However, in actual work, safety accidents happen to robots from time to time. How to ensure the safe operation of robots in a limited and complex working environment is the key to improve robot technology. Therefore, it is of great significance to study the dynamic obstacle avoidance of robots in complex environment for improving the intelligence and safety of robots, and the application of human-robot collaboration. Objective: The primary purpose of this paper is to improve the traditional artificial potential field method, including he disadvantages that the improved target is inaccessible and easily plunged into local optimal solution of the drawback of the improved method, second. Secondly, the background difference method based on binocular vision and Kalman filtering algorithm, and the environmental map containing the static and dynamic obstacles is obtained. After obtaining the position information of static and dynamic obstacles, the robot arm can make good use of the improved artificial potential field method to plan its own trajectory, thus realizing the dynamic obstacle avoidance of the robot arm in complex environment. Methodology: The background difference method and the Kalman filtering algorithm based on binocular vision were introduced to track the dynamic obstacles, and the improved artificial potential field method for path planning was applied to the dynamic obstacle avoidance path planning of the manipulator. Finally, the simulation and experimental results show that under the complex environment with dynamic obstacles exist, robot arm can realize independent dynamic obstacle avoidance. Results: By using background difference method and Kalman filtering algorithm to track the target in real time, the result showed that the target could be detected and tracked well. By improving the defect that the traditional artificial potential field method is easy to fall into local optimum, the improved algorithm can well realize the dynamic obstacle avoidance of the manipulator. Conclusions: For the development requirements of the industrial robots in the future, this paper based on binocular vision, which can make the manipulator realize more intelligent industrial production activities in complex working environment, meet the needs of future industrial development, and make this technology play an important role in production activities.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tianying Xu ◽  
Haibo Zhou ◽  
Shuaixia Tan ◽  
Zhiqiang Li ◽  
Xia Ju ◽  
...  

Purpose This paper aims to resolve issues of the traditional artificial potential field method, such as falling into local minima, low success rate and lack of ability to sense the obstacle shapes in the planning process. Design/methodology/approach In this paper, an improved artificial potential field method is proposed, where the object can leave the local minima point, where the algorithm falls into, while it avoids the obstacle, following a shorter feasible path along the repulsive equipotential surface, which is locally optimized. The whole obstacle avoidance process is based on the improved artificial potential field method, applied during the mechanical arm path planning action, along the motion from the starting point to the target point. Findings Simulation results show that the algorithm in this paper can effectively perceive the obstacle shape in all the selected cases and can effectively shorten the distance of the planned path by 13%–41% with significantly higher planning efficiency compared with the improved artificial potential field method based on rapidly-exploring random tree. The experimental results show that the improved artificial potential field method can effectively plan a smooth collision-free path for the object, based on an algorithm with good environmental adaptability. Originality/value An improved artificial potential field method is proposed for optimized obstacle avoidance path planning of a mechanical arm in three-dimensional space. This new approach aims to resolve issues of the traditional artificial potential field method, such as falling into local minima, low success rate and lack of ability to sense the obstacle shapes in the planning process.


Sign in / Sign up

Export Citation Format

Share Document