spacecraft formation
Recently Published Documents


TOTAL DOCUMENTS

503
(FIVE YEARS 108)

H-INDEX

39
(FIVE YEARS 6)

2021 ◽  
pp. 1961-1971
Author(s):  
Xicheng Yang ◽  
Qun Zong ◽  
Xiuyun Zhang ◽  
Wenjing Liu

Author(s):  
Xiong Xie ◽  
Tao Sheng ◽  
Liang He ◽  
Zhijun Chen ◽  
Yong Zhao

This article investigates the distributed attitude consensus tracking control for spacecraft formation flying with unknown external disturbances and model uncertainties. First, a terminal sliding mode disturbance observer (TSMDO) is constructed to estimate the generalized disturbances including external disturbances and model uncertainties. The finite-time convergence of the estimation errors using TSMDO is analyzed. Second, a variable structure control law is developed to avoid introducing initial errors of the TSMDO. Third, a novel adaptive nonsingular fast terminal sliding mode (ANFTSM) control law based on TSMDO is proposed to ensure the convergence of attitude tracking errors to zero. Based on theoretical analysis, the finite-time stability can be guaranteed by Lyapunov theory. Finally, the effectiveness of the developed control law is verified via numerical simulations.


2021 ◽  
Vol 13 (10) ◽  
pp. 168781402110514
Author(s):  
Lei Zhao ◽  
Changqing Yuan ◽  
Qingbo Hao ◽  
Jingjiu He

This paper aims to investigate the feasibility of using the combination of solar radiation pressure and Coulomb force as a propellantless control method for spacecraft formation around the planetary displaced orbit. Firstly, the dynamical equation of spacecraft formation is derived and linearized. Based on the linearized dynamic model, an integral sliding mode controller (ISMC) is designed. Aimed to stabilize the spacecraft formation, the control method is proposed to adjust the product of the charge and the attitude angles of two spacecrafts. Finally, numerical simulations are conducted and the results show that the controller can make the formation achieve the desired configuration with favorable control performances.


Author(s):  
Xiaolong WANG ◽  
Chong SUN ◽  
Qun FANG ◽  
Qi LI ◽  
Shuo SONG

In the presence of compound disturbances, a multi-spacecraft cooperative collision avoidance capture control method based on disturbance observer was proposed, which can solve the problem of low speed rolling non-cooperative target close-range capture in space. Firstly, a relative motion model of attitude and orbit coupling is established. Secondly, the disturbance observer is used to estimate and cancel the compound disturbance in the capture process. At the same time, the hyperquadric surfaces are used to describe the shape of space non-cooperative targets and capture spacecraft to establish a composite artificial potential field, and a robust control law with collision avoidance function is also designed. Finally, the stability of the controlled system is proved by using Lyapunov function, and the collision avoidance performance of the system is analyzed. Numerical simulations are carried out to evaluate the effectiveness of the proposed control scheme.


2021 ◽  
Author(s):  
Xing Yanjun ◽  
Gao Xiangbo ◽  
Li Tieying ◽  
Ye Dong ◽  
Zhang Jiaxun

Sign in / Sign up

Export Citation Format

Share Document