Observations of new aerosol particle formation in a tropical urban atmosphere

2013 ◽  
Vol 71 ◽  
pp. 340-351 ◽  
Author(s):  
Raghu Betha ◽  
Dominick V. Spracklen ◽  
Rajasekhar Balasubramanian
Tellus B ◽  
2008 ◽  
Vol 60 (4) ◽  
Author(s):  
Tareq Hussein ◽  
Jyrki Martikainen ◽  
Heikki Junninen ◽  
Larisa Sogacheva ◽  
Robert Wagner ◽  
...  

Tellus B ◽  
2008 ◽  
Vol 60 (4) ◽  
Author(s):  
Miikka Dal Maso ◽  
Antti Hyvärinen ◽  
Mika Komppula ◽  
Peter Tunved ◽  
Veli-Matti Kerminen ◽  
...  

2010 ◽  
Vol 107 (15) ◽  
pp. 6646-6651 ◽  
Author(s):  
A. Metzger ◽  
B. Verheggen ◽  
J. Dommen ◽  
J. Duplissy ◽  
A. S. H. Prevot ◽  
...  

2016 ◽  
Author(s):  
Mikhail A. Zatevakhin ◽  
Valentin K. Arefiev ◽  
Sergey E. Semashko ◽  
Rostislav A. Dolganov

2021 ◽  
Vol 21 (10) ◽  
pp. 7963-7981
Author(s):  
Zhaomin Yang ◽  
Li Xu ◽  
Narcisse T. Tsona ◽  
Jianlong Li ◽  
Xin Luo ◽  
...  

Abstract. Aromatic hydrocarbons can dominate the volatile organic compound budget in the urban atmosphere. Among them, 1,2,4-trimethylbenzene (TMB), mainly emitted from solvent use, is one of the most important secondary organic aerosol (SOA) precursors. Although atmospheric SO2 and NH3 levels can affect secondary aerosol formation, the influenced extent of their impact and their detailed driving mechanisms are not well understood. The focus of the present study is to examine the chemical compositions and formation mechanisms of SOA from TMB photooxidation influenced by SO2 and/or NH3. Here, we show that SO2 emission could considerably enhance aerosol particle formation due to SO2-induced sulfate generation and acid-catalyzed heterogeneous reactions. Orbitrap mass spectrometry measurements revealed the generation of not only typical TMB products but also hitherto unidentified organosulfates (OSs) in SO2-added experiments. The OSs designated as being of unknown origin in earlier field measurements were also detected in TMB SOA, indicating that atmospheric OSs might also be originated from TMB photooxidation. For NH3-involved experiments, results demonstrated a positive correlation between NH3 levels and particle volume as well as number concentrations. The effects of NH3 on SOA composition were slight under SO2-free conditions but stronger in the presence of SO2. A series of multifunctional products with carbonyl, alcohols, and nitrate functional groups were tentatively characterized in NH3-involved experiments based on infrared spectra and mass spectrometry analysis. Plausible formation pathways were proposed for detected products in the particle phase. The volatility distributions of products, estimated using parameterization methods, suggested that the detected products gradually condense onto the nucleation particles to contribute to aerosol formation and growth. Our results suggest that strict control of SO2 and NH3 emissions might remarkably reduce organosulfates and secondary aerosol burden in the atmosphere. Updating the aromatic oxidation mechanism in models could result in more accurate treatment of particle formation for urban regions with considerable SO2, NH3, and aromatics emissions.


Tellus B ◽  
2008 ◽  
Vol 60 (4) ◽  
pp. 509-521 ◽  
Author(s):  
Tareq Hussein ◽  
Jyrki Martikainen ◽  
Heikki Junninen ◽  
Larisa Sogacheva ◽  
Robert Wagner ◽  
...  

2007 ◽  
Vol 7 (14) ◽  
pp. 3683-3700 ◽  
Author(s):  
T. M. Ruuskanen ◽  
M. Kaasik ◽  
P. P. Aalto ◽  
U. Hõrrak ◽  
M. Vana ◽  
...  

Abstract. The LAPBIAT measurement campaign took place in the Värriö SMEAR I measurement station located in Eastern Lapland in the spring of 2003 between 26 April and 11 May. In this paper we describe the measurement campaign, concentrations and fluxes of aerosol particles, air ions and trace gases, paying special attention to an aerosol particle formation event broken by a air mass change from a clean Arctic air mass with new particle formation to polluted one approaching from industrial areas of Kola Peninsula, Russia, lacking new particle formation. Aerosol particle number flux measurements show strong downward fluxes during that time. Concentrations of coarse aerosol particles were high for 1–2 days before the nucleation event (i.e. 28–29 April), very low immediately before and during the observed aerosol particle formation event (30 April) and increased moderately from the moment of sudden break of the event. In general particle deposition measurements based on snow samples show the same changes. Measurements of the mobility distribution of air ions showed elevated concentrations of intermediate air ions during the particle formation event. We estimated the growth rates in the nucleation mode size range. For particles <10 nm, the growth rate increases with size on 30 April. Dispersion modelling made with model SILAM support the conclusion that the nucleation event was interrupted by an outbreak of sulphate-rich air mass in the evening of 30 April that originated from the industry at Kola Peninsula, Russia. The results of this campaign highlight the need for detailed research in atmospheric transport of air constituents for understanding the aerosol dynamics.


2001 ◽  
Vol 73 (6) ◽  
pp. 590-590
Author(s):  
Sabine Seisel ◽  
Götz Gleitsmann ◽  
Reinhard Zellner

Sign in / Sign up

Export Citation Format

Share Document