Building information modeling services reuse for facility management for semiconductor fabrication plants

2019 ◽  
Vol 102 ◽  
pp. 270-287 ◽  
Author(s):  
Chuen-Chyi Hsieh ◽  
Chang-Yuan Liu ◽  
Pai-Yu Wu ◽  
An-Ping Jeng ◽  
Ru-Guan Wang ◽  
...  
Author(s):  
Aryani Ahmad Latiffi ◽  
Suzila Mohd ◽  
Juliana Brahim

Building Information Modeling (BIM) represents a new paradigm in the Malaysian architecture, engineering, and construction (AEC) industry. BIM technology provides virtual models (including 3-D models) to generate a building’s entire lifecycle. The model can also be used for analyzing design clashes, project scheduling, cost estimation, and facility management. The use of BIM in construction projects can reduce time to develop a project, reduce construction cost, and increase project quality. This paper aims to explore roles of BIM in the Malaysian construction industry. Semi-structured interviews were conducted with project consultants and BIM consultants involved in two government projects. The projects were the National Cancer Institute (NCI) Malaysia and Sultan Ibrahim Hall (formerly known as the Multipurpose Hall of Universiti Tun Hussein Onn Malaysia, or UTHM). The interviews revealed effects of BIM in both projects and potential improvement in implementing BIM in construction projects in Malaysia. A literature review and the interviews revealed that BIM is increasingly used and accepted by construction players in Malaysia, and is expected to grow in future.


Author(s):  
Seri Nanisa Sima Yusoff ◽  
◽  
Juliana Brahim ◽  

Heritage buildings offer a sense of identity in every country. Preserving heritage buildings is important to ensure that bona fide aesthetic values are well maintained. However, the conservation and preservation of heritage buildings during operation and maintenance (O&M) has been taken lightly which can cause buildings to be abandoned due to the tedious work involved for the Facility Managers. Therefore, a need for advanced technology, such as Historic Building Information Modeling (HBIM), is important to enhance the efficiency of O&M for heritage buildings in Malaysia. Even though BIM has many benefits, yet it is not widely adopted in Malaysia especially for heritage buildings. Therefore, this research highlights the awareness of BIM for social heritage buildings in Kuala Lumpur. Semi-structured interviews were conducted with various construction professionals that have experience in BIM projects and managing heritage buildings. These interviews prove that the current facility management practices for heritage buildings do not use advanced technology for upkeep and maintenance, particularly when producing dilapidation reports and measured drawings. Findings also show the challenges that restrict the implementation of BIM in heritage buildings and how to overcome the problems which have been categorized into three (3) elements: people, process, and technology. This research is expected to fill the gap in the implementation of BIM by supporting the initiatives by the Malaysian government for increasing productivity in construction projects through the adoption of new technology, like BIM, especially for heritage buildings.


Facilities ◽  
2016 ◽  
Vol 34 (3/4) ◽  
pp. 233-246 ◽  
Author(s):  
Alireza Golabchi ◽  
Manu Akula ◽  
Vineet Kamat

Purpose Organizations involved in facility management (FM) can use building information modeling (BIM) as a knowledge repository to document evolving facility information and to support decisions made by the facility managers during the operational life of a facility. Despite ongoing advances in FM technologies, FM practices in most facilities are still labor intensive, time consuming and often rely on unreliable and outdated information. To address these shortcomings, the purpose of this study is to propose an automated approach that demonstrates the potential of using BIM to develop algorithms that automate decision-making for FM applications. Design/methodology/approach A BIM plug-in tool is developed that uses a fault detection and diagnostics (FDD) algorithm to automate the process of detecting malfunctioning heating, ventilation, and air conditioning (HVAC) equipment. The algorithm connects to a complaint ticket database and automates BIM to determine potentially damaged HVAC system components and develops a plan of action for the facility inspectors accordingly. The approach has been implemented as a case study in an operating facility to improve the process of HVAC system diagnosis and repair. Findings By implementing the proposed application in a case study, the authors found that automated BIM approaches such as the one developed in this study, can be highly beneficial in FM practices by increasing productivity and lowering costs associated with decision-making. Originality/value This study introduces an innovative approach that leverages BIM for automated fault detection in operational buildings. FM personnel in charge of HVAC inspection and repair can highly benefit from the proposed approach, as it eliminates the time required to locate HVAC equipment at fault manually.


2020 ◽  
Vol 10 (21) ◽  
pp. 7422
Author(s):  
Taewook Kang ◽  
Shashidhar Patil ◽  
Kyubyung Kang ◽  
Dan Koo ◽  
Jonghoon Kim

The number of scan-to-BIM projects that convert scanned data into Building Information Modeling (BIM) for facility management applications in the Mechanical, Electrical and Plumbing (MEP) fields has been increasing. This conversion features an application purpose-oriented process, so the Scan-to-BIM work parameters to be applied vary in each project. Inevitably, a modeler manually adjusts the BIM modeling parameters according to the application purpose, and repeats the Scan-to-BIM process until the desired result is achieved. This repetitive manual process has adverse consequences for project productivity and quality. If the Scan-to-BIM process can be formalized based on predefined rules, the repetitive process in various cases can be automated by re-adjusting only the parameters. In addition, the predefined rule-based Scan-to-BIM pipeline can be stored and reused as a library. This study proposes a rule-based Scan-to-BIM Mapping Pipeline to support application-oriented Scan-to-BIM process automation, variability and reusability. The application target of the proposed pipeline method is the plumbing system that occupies a large number of MEPs. The proposed method was implemented using an automatic generation algorithm, and its effectiveness was verified.


Sign in / Sign up

Export Citation Format

Share Document