plumbing system
Recently Published Documents


TOTAL DOCUMENTS

384
(FIVE YEARS 134)

H-INDEX

39
(FIVE YEARS 7)

2022 ◽  
Vol 955 (1) ◽  
pp. 012013
Author(s):  
A Sentani ◽  
Soedarsono ◽  
E K Soeridjal

Abstract Earthquakes can be followed by liquefaction, which is a response of saturated soil when it is subjected to shock or stress that cause loss of soil strength or bearing capacity as an impact of the increasing of soil pore water and the loss of the soil stress’s effectiveness. This research using Korinofaction that work to cause cyclic loads or vibrations that come from DC servo motor with an adjustable speed and force. The earthquake’s strength is measured by the number of rpm measured on the digital tachometer. Korinofaction is equipped with plumbing system to observe fluid behaviour during liquefaction. The results of research showed that silty sand and silt was liquefied in VIII Modified Mercalli Intensity earthquake and cause the occurrence of water flow on the surface due to increase soil pore stress. The flow rate that triggers liquefaction in the silty sand is 6,769 × 10-5 m 3/ second ’ and silt is 5,0 × 10-5 m 3/ second . The water flow that flows in the silty sand had permeability of 4,76 × 10-4 Cm/second while on the silt is 6,09 × 10-4 Cm/second . After liquefaction, gradient hydraulic of silty sand is 4,76 mm and silt is 6,09 mm. Based on this research liquefaction caused mobilized debris flow and muddy debris flow.


2021 ◽  
Vol 9 ◽  
Author(s):  
Elisa Trasatti ◽  
Cristiano Tolomei ◽  
Lianhuan Wei ◽  
Guido Ventura

Changbaishan volcano (China/North Korea border) was responsible for the largest eruption of the first Millennium in 946 CE and is characterized by a multi-level plumbing system. It last erupted in 1903 and presently consists of a cone with summit caldera. An unrest episode occurred between 2002 and 2006, followed by subsidence. Here, we analyze the Changbaishan 2018–2020 deformations by using remote sensing data, detecting an up to 20 mm/yr, NW-SE elongated, Line of Sight movement of its southeastern flank and a −20 mm/yr Line of Sight movement of the southwestern flank. This reveals an unrest occurring during 2018–2020. Modeling results suggest that three active sources are responsible for the observed ground velocities: a deep tabular deflating source, a shallower inflating NW-SE elongated spheroid source, and a NW-SE striking dip-slip fault. The depth and geometry of the inferred sources are consistent with independent petrological and geophysical data. Our results reveal an upward magma migration from 14 to 7.7 km. The modeling of the leveling data of the 2002–2005 uplift and 2009–2011 subsidence depicts sources consistent with the 2018–2020 active system retrieved. The past uplift is interpreted as related to pressurization of the upper portion of the spheroid magma chamber, whereas the subsidence is consistent with the crystallization of its floor, this latter reactivated in 2018–2020. Therefore, Changbaishan is affected by an active magma recharge reactivating a NW-SE trending fault system. Satellite data analysis is a key tool to unravel the magma dynamics at poorly monitored and cross-border volcanoes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Rosa Anna Corsaro ◽  
Stefano Branca ◽  
Emanuela De Beni ◽  
Jean-Claude Tanguy

The structure of an active volcano is highly dependent on the interplay between the geodynamic context, the tectonic assessment as well as the magmatic processes in the plumbing system. This complex scenario, widely explored at Etna during the last 40 years, is nevertheless incomplete for the recent historical activity. In 1763 two eruptions occurred along the west flank of the volcano. There, an eruption started on 6th February and formed the scoria cone of Mt. Nuovo and a roughly 4-km-long lava flow field. Another small scoria cone, known as Mt. Mezza Luna, is not dated in historical sources. It is located just 1 km eastward of Mt. Nuovo and produced a 700 m long flow field. We focused on the activity of Mts. Nuovo and Mezza Luna for several reasons. First, the old geological maps and volcanological catalogues indicate that Mt. Mezza Luna and Mt. Nuovo cones were formed during the same eruption, while historical sources described Mt. Nuovo’s activity as producing a single scoria cone and do not give information about the formation of Mt. Mezza Luna. Second, petrologic studies highlight that the products of Mt. Mezza Luna are similar to the sub-aphyric Etna basalts; they preserve a composition relatively close to Etna primitive magma which were also erupted in 1763, during La Montagnola flank eruption, which took place along the South Rift of the volcano. Third, the two scoria cones built up along the so-called West Rift of Etna, which represents one of the main magma-ascent zones of the volcano. We applied a multidisciplinary approach that could prove useful for other volcanoes whose past activity is still to be reconstructed. Critical reviews of historical records, new field surveys, petrochemical analyses and petrologic modelling of the Mts. Nuovo and Mezza Luna eruptions have been integrated with literature data. The results allowed improving the stratigraphic record of historical eruptions reported in the Mount Etna Geological map, modelling the sub-volcanic magmatic processes responsible for magma differentiation, and evidencing recurrent mechanisms of magma transfer at Etna. Indeed, the intrusion of a deep primitive magma along the South Rift is often associated with the activation of other rift zones that erupt residual magma stored in the shallow plumbing system.


2021 ◽  
Vol 9 ◽  
Author(s):  
René Mania ◽  
Simone Cesca ◽  
Thomas R. Walter ◽  
Ivan Koulakov ◽  
Sergey L. Senyukov

Explosive eruptions at steep-sided volcanoes may develop with complex precursor activity occurring in a poorly-understood magma plumbing system so that timelines and possible interactions with the geologic surrounding are often unresolved. Here we investigate the episode prior to the energetic December 20, 2017 eruption at Bezymianny volcano, Kamchatka. We compare degassing activity inferred from time-lapse camera images, seismicity and real-time seismic amplitude (RSAM) data derived from a temporary station network, as well as high-resolution InSAR displacement maps. Results show that the first changes can be identified in low-frequency seismicity and degassing at least 90 days before the eruption, while the first volcano-tectonic (VT) seismicity occurred 50 days before the eruption. Coinciding with significant changes of the RSAM, surface displacements affect the volcanic flanks at least 9 days prior to the eruption. Inversion modeling of the pre-eruptive surface deformation as well as deflation-type, co-eruptive surface changes indicate the presence of a shallow and transient reservoir. We develop a conceptual model for Bezymianny volcano initiating with deep seismicity, followed by shallow events, rockfalls, steaming and an inflating reservoir. The eruption is then associated with subsidence, caused by deflation of the same reservoir. This sequence and conceivable causality of these observations are providing a valuable contribution to our understanding of the shallow magma plumbing system beneath Bezymianny and may have relevance for volcano monitoring and early warning strategies at similar volcanoes elsewhere.


Author(s):  
Dennis Nurjadi ◽  
Martin Scherrer ◽  
Uwe Frank ◽  
Nico T. Mutters ◽  
Alexandra Heininger ◽  
...  

The hospital water environment can be a reservoir for a multiward outbreak, leading to acquisitions or transmissions of multidrug-resistant organisms in a hospital setting. The majority of Gram-negative bacteria are able to build biofilms and persist in the hospital plumbing system over a long period of time.


Sign in / Sign up

Export Citation Format

Share Document