Multi-objective ordinal optimization for simulation optimization problems

Automatica ◽  
2007 ◽  
Vol 43 (11) ◽  
pp. 1884-1895 ◽  
Author(s):  
Suyan Teng ◽  
Loo Hay Lee ◽  
Ek Peng Chew
2013 ◽  
Vol 12 (02) ◽  
pp. 233-260 ◽  
Author(s):  
SHIH-CHENG HORNG ◽  
SHIN-YEU LIN

In this paper, we combine evolution strategy (ES) with ordinal optimization (OO), abbreviated as ES + OO, to solve real-time combinatorial stochastic simulation optimization problems with huge discrete solution space. The first step of ES + OO is to use an artificial neural network (ANN) to construct a surrogate model to roughly evaluate the objective value of a solution. In the second step, we apply ES assisted by the ANN-based surrogate model to the considered problem to obtain a subset of good enough solutions. In the last step, we use the exact model to evaluate each solution in the good enough subset, and the best one is the final good enough solution. We apply the proposed algorithm to a wafer testing problem, which is formulated as a combinatorial stochastic simulation optimization problem that consists of a huge discrete solution space formed by the vector of threshold values in the testing process. We demonstrate that (a) ES + OO outperforms the combination of genetic algorithm (GA) with OO using extensive simulations in the wafer testing problem, and its computational efficiency is suitable for real-time application, (b) the merit of using OO approach in solving the considered problem and (c) ES + OO can obtain the approximate Pareto optimal solution of the multi-objective function resided in the considered problem. Above all, we propose a systematic procedure to evaluate the performance of ES + OO by providing a quantitative result.


Author(s):  
Antonio Candelieri ◽  
Andrea Ponti ◽  
Ilaria Giordani ◽  
Francesco Archetti

The main goal of this paper is to show that Bayesian optimization could be regarded as a general framework for the data driven modelling and solution of problems arising in water distribution systems. Hydraulic simulation, both scenario based, and Monte Carlo is a key tool in modelling in water distribution systems. The related optimization problems fall in a simulation/optimization framework in which objectives and constraints are often black-box. Bayesian Optimization (BO) is characterized by a surrogate model, usually a Gaussian process, but also a random forest and increasingly neural networks and an acquisition function which drives the search for new evaluation points. These modelling options make BO nonparametric, robust, flexible and sample efficient particularly suitable for simulation/optimization problems. A defining characteristic of BO is its versatility and flexibility, given for instance by different probabilistic models, in particular different kernels, different acquisition functions. These characteristics of the Bayesian optimization approach are exemplified by the two problems: cost/energy optimization in pump scheduling and optimal sensor placement for early detection on contaminant intrusion. Different surrogate models have been used both in explicit and implicit control schemes. Showing that BO can drive the process of learning control rules directly from operational data. BO can also be extended to multi-objective optimization. Two algorithms have been proposed for multi-objective detection problem using two different acquisition functions.


2018 ◽  
Vol 8 (11) ◽  
pp. 2153 ◽  
Author(s):  
Shih-Cheng Horng ◽  
Shieh-Shing Lin

Probabilistic constrained simulation optimization problems (PCSOP) are concerned with allocating limited resources to achieve a stochastic objective function subject to a probabilistic inequality constraint. The PCSOP are NP-hard problems whose goal is to find optimal solutions using simulation in a large search space. An efficient “Ordinal Optimization (OO)” theory has been utilized to solve NP-hard problems for determining an outstanding solution in a reasonable amount of time. OO theory to solve NP-hard problems is an effective method, but the probabilistic inequality constraint will greatly decrease the effectiveness and efficiency. In this work, a method that embeds ordinal optimization (OO) into tree–seed algorithm (TSA) (OOTSA) is firstly proposed for solving the PCSOP. The OOTSA method consists of three modules: surrogate model, exploration and exploitation. Then, the proposed OOTSA approach is applied to minimize the expected lead time of semi-finished products in a pull-type production system, which is formulated as a PCSOP that comprises a well-defined search space. Test results obtained by the OOTSA are compared with the results obtained by three heuristic approaches. Simulation results demonstrate that the OOTSA method yields an outstanding solution of much higher computing efficiency with much higher quality than three heuristic approaches.


Author(s):  
Liya Wang ◽  
Vittal Prabhu

In recent years, simulation optimization has attracted a great deal of attention because simulation can model the real systems in fidelity and capture complex dynamics. Among numerous simulation optimization algorithms, Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm is an attractive approach because of its simplicity and efficiency. Although SPSA has been applied in several problems, it does not converge for some. This research proposes Augmented Simultaneous Perturbation Stochastic Approximation (ASPSA) algorithm in which SPSA is augmented to include presearch, ordinal optimization, non-uniform gain, and line search. Performances of ASPSA are tested on complex discrete supply chain inventory optimization problems. The tests results show that ASPSA not only achieves speed up, but also improves solution quality and converges faster than SPSA. Experiments also show that ASPSA is comparable to Genetic Algorithms in solution quality (6% to 15% worse) but is much more efficient computationally (over 12x faster).


Sign in / Sign up

Export Citation Format

Share Document