Mass spectrometric O-glycan analysis after combined O-glycan release by beta-elimination and 1-phenyl-3-methyl-5-pyrazolone labeling

2012 ◽  
Vol 1820 (9) ◽  
pp. 1420-1428 ◽  
Author(s):  
Gerhild Zauner ◽  
Carolien A.M. Koeleman ◽  
André M. Deelder ◽  
Manfred Wuhrer
2015 ◽  
Vol 14 (11) ◽  
pp. 4932-4939 ◽  
Author(s):  
Jianhui Zhu ◽  
Jing Wu ◽  
Haidi Yin ◽  
Jorge Marrero ◽  
David M. Lubman

2013 ◽  
Vol 405 (8) ◽  
pp. 2481-2493 ◽  
Author(s):  
Fabian Higel ◽  
Uwe Demelbauer ◽  
Andreas Seidl ◽  
Wolfgang Friess ◽  
Fritz Sörgel

2019 ◽  
Vol 9 (3) ◽  
pp. 161
Author(s):  
Sung-Eun Cho ◽  
Hyojin Chae ◽  
Hyung-Doo Park ◽  
Sail Chun ◽  
Yong-Wha Lee ◽  
...  

2015 ◽  
Vol 60 (6) ◽  
pp. 511-520 ◽  
Author(s):  
A.A. Efremov ◽  
◽  
V.G. Litovchenko ◽  
V.P. Melnik ◽  
O.S. Oberemok ◽  
...  

2002 ◽  
Vol 75 (3) ◽  
pp. 316 ◽  
Author(s):  
Zsolt Ablonczy ◽  
Patrice Goletz ◽  
Daniel R. Knapp ◽  
Rosalie K. Crouch

2017 ◽  
Author(s):  
Xueming Dong

Catalytic deoxygenation of coal enhances the stability and combustion performance of coal-derived liquids. However, determination of the selectivity of removal of oxygen atoms incorporated in or residing outside of aromatic rings is challenging. This limits the ability to evaluate the success of catalytic deoxygenation processes. A mass spectrometric method, in-source collision-activated dissociation (ISCAD), combined with high resolution product ion detection, is demonstrated to allow the determination of whether the oxygen atoms in aromatic compounds reside outside of aromatic rings or are part of the aromatic system, because alkyl chains can be removed from aromatic cores via ISCAD. Application of this method for the analysis of a subbituminous coal treated using a supported catalyst revealed that the catalytic treatment reduced the number of oxygen-containing heteroaromatic rings but not the number of oxygen atoms residing outside the aromatic rings.<br>


2017 ◽  
Author(s):  
Xueming Dong

Catalytic deoxygenation of coal enhances the stability and combustion performance of coal-derived liquids. However, determination of the selectivity of removal of oxygen atoms incorporated in or residing outside of aromatic rings is challenging. This limits the ability to evaluate the success of catalytic deoxygenation processes. A mass spectrometric method, in-source collision-activated dissociation (ISCAD), combined with high resolution product ion detection, is demonstrated to allow the determination of whether the oxygen atoms in aromatic compounds reside outside of aromatic rings or are part of the aromatic system, because alkyl chains can be removed from aromatic cores via ISCAD. Application of this method for the analysis of a subbituminous coal treated using a supported catalyst revealed that the catalytic treatment reduced the number of oxygen-containing heteroaromatic rings but not the number of oxygen atoms residing outside the aromatic rings.<br>


Sign in / Sign up

Export Citation Format

Share Document