spectrometric analysis
Recently Published Documents


TOTAL DOCUMENTS

3458
(FIVE YEARS 445)

H-INDEX

92
(FIVE YEARS 8)

2022 ◽  
Vol 11 (1) ◽  
pp. 252
Author(s):  
Joanna Połomska ◽  
Barbara Sozańska

(1) Background: L-arginine (L-ARG) and its metabolites are involved in some aspects of asthma pathogenesis (airway inflammation, oxidative stress, bronchial responsiveness, collagen deposition). Published data indicate that lungs are a critical organ for the regulation of L-ARG metabolism and that alterations in L-ARG metabolism may be significant for asthma. The aim of this study was to assess the levels of L-ARG and its metabolites in pediatric patients with asthma in serum and exhaled breath condensate (EBC) by mass spectrometric analysis and compare them with non-asthmatic children. (2) Methods: Sixty-five children (37 pediatric patients with bronchial asthma and 28 healthy control subjects) aged 6–17 participated in the study. All participants underwent a clinical visit, lung tests, allergy tests with common aeroallergens, and serum and EBC collection. The levels of biomarkers were determined in both serum and EBC. Analytical chromatography was conducted using an Acquity UPLC system equipped with a cooled autosampler and an Acquity HSS T3 column. Mass spectrometric analysis was conducted using the Xevo G2 QTOF MS with electrospray ionization (ESI) in positive ion mode. (3) Results: Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) levels in serum and EBC did not differ significantly in asthmatic children and healthy control subjects. We found no correlation between forced expiratory volume in one second (FEV1) and L-ARG and its metabolites, as well as between interleukin-4 (IL-4) serum level and L-ARG and its metabolites. Concentrations of ADMA, SDMA, citrulline (CIT), and ornithine (ORN) were higher in serum than EBC in asthmatics and non-asthmatics. By contrast, concentrations of dimethylarginine (DMA) were higher in EBC than serum. ADMA/L-ARG, SDMA/L-ARG, and DMA/L-ARG ratios were significantly higher in EBC than in serum in asthmatics and in non-asthmatics. (4) Conclusions: Serum and EBC concentrations of L-ARG and its metabolites were not an indicator of pediatric bronchial asthma in our study.


2022 ◽  
Vol 7 (4) ◽  
pp. 23-33
Author(s):  
L. A. Kraeva ◽  
A. L. Panin ◽  
A. E. Goncharov ◽  
A. B. Belov ◽  
D. Yu. Vlasov ◽  
...  

Monitoring of polar ecosystems is one of the most important areas of research in the use of Arctic territories in economic activities. An important place in such work is occupied by biomedical research aimed at identifying the risks of the occurrence of foci of infectious diseases in the areas of polar settlements.The purpose: to develop an algorithm for microbiological monitoring in the Arctic region.Materials and methods: classical bacteriological, mycological research, molecular-genetic, MALDI-TOF mass spectrometric analysis, phenotypic methods for determining antibiotic resistance, methods of mathematical data processing.Results and their discussion. The paper considers the scientific and methodological principles and the main stages of microbiota monitoring in the areas of polar settlements. The results of the study of samples from several territories along the Northern Sea Route are presented. The main habitats where potentially dangerous microorganisms should be detected are indicated. The role of anthropogenic invasion in the formation of Arctic microbiocenoses is noted. The trends of increasing the number and diversity of pathogenic microorganisms, both in the natural biocenoses of the Arctic and in the areas of polar settlements, are discussed. The necessity of microbiological monitoring as an integral part of epidemiological monitoring in the areas of Arctic settlements along the Northern Sea Route is substantiated.


2022 ◽  
Vol 2155 (1) ◽  
pp. 012024
Author(s):  
I I Sadikov ◽  
B Kh Yarmatov ◽  
T M Usmanov

Abstract The work is devoted to the development of methods for determining the elemental and isotopic composition of spent ion-exchange resin, industrial waste and environmental objects using an inductively coupled plasma mass spectrometer and analyzing specific samples to determine the content of noble and rare metals in technological materials, industrial waste and natural objects with application of the developed techniques. This article determines the elemental composition of the spent ion-exchange resin SIM202 with the Inductively coupled plasma mass spectrometry (ICP-MS) method and also shows the comparison of the results with neutron activation analysis (NAA). The distribution coefficient of elements in a chromatographic column in ion-exchange resins TAO and SIM202 is given.


2021 ◽  
Vol 23 (1) ◽  
pp. 319
Author(s):  
Nicolai Bjødstrup Palstrøm ◽  
Aleksandra M. Rojek ◽  
Hanne E. H. Møller ◽  
Charlotte Toftmann Hansen ◽  
Rune Matthiesen ◽  
...  

Amyloidosis is a rare disease caused by the misfolding and extracellular aggregation of proteins as insoluble fibrillary deposits localized either in specific organs or systemically throughout the body. The organ targeted and the disease progression and outcome is highly dependent on the specific fibril-forming protein, and its accurate identification is essential to the choice of treatment. Mass spectrometry-based proteomics has become the method of choice for the identification of the amyloidogenic protein. Regrettably, this identification relies on manual and subjective interpretation of mass spectrometry data by an expert, which is undesirable and may bias diagnosis. To circumvent this, we developed a statistical model-assisted method for the unbiased identification of amyloid-containing biopsies and amyloidosis subtyping. Based on data from mass spectrometric analysis of amyloid-containing biopsies and corresponding controls. A Boruta method applied on a random forest classifier was applied to proteomics data obtained from the mass spectrometric analysis of 75 laser dissected Congo Red positive amyloid-containing biopsies and 78 Congo Red negative biopsies to identify novel “amyloid signature” proteins that included clusterin, fibulin-1, vitronectin complement component C9 and also three collagen proteins, as well as the well-known amyloid signature proteins apolipoprotein E, apolipoprotein A4, and serum amyloid P. A SVM learning algorithm were trained on the mass spectrometry data from the analysis of the 75 amyloid-containing biopsies and 78 amyloid-negative control biopsies. The trained algorithm performed superior in the discrimination of amyloid-containing biopsies from controls, with an accuracy of 1.0 when applied to a blinded mass spectrometry validation data set of 103 prospectively collected amyloid-containing biopsies. Moreover, our method successfully classified amyloidosis patients according to the subtype in 102 out of 103 blinded cases. Collectively, our model-assisted approach identified novel amyloid-associated proteins and demonstrated the use of mass spectrometry-based data in clinical diagnostics of disease by the unbiased and reliable model-assisted classification of amyloid deposits and of the specific amyloid subtype.


Author(s):  
Andreas Zietzer ◽  
Alina Lisann Jahnel ◽  
Marko Bulic ◽  
Katharina Gutbrod ◽  
Philip Düsing ◽  
...  

Abstract Background Pro-apoptotic and pro-inflammatory ceramides are crucially involved in atherosclerotic plaque development. Local cellular ceramide accumulation mediates endothelial apoptosis, especially in type 2 diabetes mellitus, which is a major cardiovascular risk factor. In recent years, large extracellular vesicles (lEVs) have been identified as an important means of intercellular communication and as regulators of cardiovascular health and disease. A potential role for lEVs as vehicles for ceramide transfer and inductors of diabetes-associated endothelial apoptosis has never been investigated. Methods and Results A mass-spectrometric analysis of human coronary artery endothelial cells (HCAECs) and their lEVs revealed C16 ceramide (d18:1–16:0) to be the most abundant ceramide in lEVs and to be significantly increased in lEVs after hyperglycemic injury to HCAECs. The increased packaging of ceramide into lEVs after hyperglycemic injury was shown to be dependent on neutral sphingomyelinase 2 (nSMase2), which was upregulated in glucose-treated HCAECs. lEVs from hyperglycemic HCAECs induced apoptosis in the recipient HCAECs compared to native lEVs from untreated HCAECs. Similarly, lEVs from hyperglycemic mice after streptozotocin injection induced higher rates of apoptosis in murine endothelial cells compared to lEVs from normoglycemic mice. To generate lEVs with high levels of C16 ceramide, ceramide was applied exogenously and shown to be effectively packaged into the lEVs, which then induced apoptosis in lEV-recipient HCAECs via activation of caspase 3. Intercellular transfer of ceramide through lEVs was confirmed by use of a fluorescently labeled ceramide analogue. Treatment of HCAECs with a pharmacological inhibitor of nSMases (GW4869) or siRNA-mediated downregulation of nSMase2 abrogated the glucose-mediated effect on apoptosis in lEV-recipient cells. In contrast, for small EVs (sEVs), hyperglycemic injury or GW4869 treatment had no effect on apoptosis induction in sEV-recipient cells. Conclusion lEVs mediate the induction of apoptosis in endothelial cells in response to hyperglycemic injury through intercellular transfer of ceramides. Graphical abstract


Author(s):  
Shakila Ramachandran ◽  
Saravanan Meenatchisundaram ◽  
Rajesh Allu ◽  
Sujith Thatipelli ◽  
Achintya Kumar Mandal

Abstract Background In alternative medicine, plants pay a major role. Some plants are known for their poisonous nature but still have some importance in the herbal drug industry for their medicinal value. Strychnos nux-vomica is one such plant. Its nuts are called as poison nut due to the presence of alkaloids. Both the nut and its minerals are having medicinal properties and hence the present study was indented to understand the nature of primary metabolites and multi elemental composition. Methods The nuts of S. nux-vomica were procured, authenticated, powdered and subjected to proximate analysis parameters, visualization of thin layer chromatographic separation (TLC) and finger print profiling through high performance thin layer chromatographic (HPTLC); surface morphology by scanning electron microscopy, energy dispersive X-ray analysis, X-ray fluorescence spectrometry, X-ray photoelectron spectrometry, powder X-ray diffractometry and inductively coupled plasma optical emission spectrometry. Results In HPTLC, 7 spots each under 254 nm, 366 nm, derivatization with vanillin sulphuric acid (VSR) reagent appeared and 2 spots with Dragendorff’s reagent. In HPTLC, 12 peaks at 254 nm, 9 peaks at 366 nm, 7 peaks at 520 nm after derivatization with VSR reagent detected. Elements such as potassium, calcium, magnesium, chlorine, aluminium, iron, manganese, sodium, nickel, phosphorus, copper, zinc, sulphur and silicon were identified. PXRD revealed that the presence of potassium chloride, calcite and dolomite as major elemental composition. Conclusions The presence of all the above elements has vital roles on human physiology. Potassium, calcium, chlorine, aluminium, nickel, phosphorus, sulphur and silicon are reported for the first time in this study.


2021 ◽  
Author(s):  
Annelies Bogaert ◽  
Daria Fijalkowska ◽  
An Staes ◽  
Tessa Van de Steene ◽  
Hans Demol ◽  
...  

Ribosome profiling has revealed translation outside of canonical coding sequences (CDSs) including translation of short upstream ORFs, long non-coding RNAs, overlapping ORFs, ORFs in UTRs or ORFs in alternative reading frames. Studies combining mass spectrometry, ribosome profiling and CRISPR-based screens showed that hundreds of ORFs derived from non-coding transcripts produce (micro)proteins, while other studies failed to find evidence for such types of non-canonical translation products. Here, we attempted to discover translation products from non-coding regions by strongly reducing the complexity of the sample prior to mass spectrometric analysis. We used an extended database as the search space and applied stringent filtering of the identified peptides to find evidence for novel translation events. Theoretically, we show that our strategy facilitates the detection of translation events of transcripts from non-coding regions, but experimentally only find 19 peptides (less than 1% of all identified peptides) that might originate from such translation events. Virotrap based interactome analysis of two N-terminal proteoforms originating from non-coding regions finally showed the functional potential of these novel proteins.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Margaux Fresnais ◽  
Sevin Turcan ◽  
Dirk Theile ◽  
Johannes Ungermann ◽  
Yasmin Abou Zeed ◽  
...  

Temozolomide (TMZ), together with bulk resection and focal radiotherapy, is currently a standard of care for glioblastoma. Absorption, distribution, metabolism, and excretion (ADME) parameters, together with the mode of action of TMZ, make its biochemical and biological action difficult to understand. Accurate understanding of the mode of action of TMZ and the monitoring of TMZ at its anatomical, cellular, and molecular sites of action (SOAs) would greatly benefit precision medicine and the development of novel therapeutic approaches in combination with TMZ. In the present perspective article, we summarize the known ADME parameters and modes of action of TMZ, and we review the possible methodological options to monitor TMZ at its SOAs. We focus our descriptions of methodologies on mass spectrometry-based approaches, and all related considerations are taken into account regarding the avoidance of artifacts in mass spectrometric analysis during sampling, sample preparation, and the evaluation of results. Finally, we provide an overview of potential applications for precision medicine and drug development.


2021 ◽  
Author(s):  
Lennard L. Bohlender ◽  
Juliana Parsons ◽  
Sebastian N.W. Hoernstein ◽  
Nina Bangert ◽  
Fernando Rodriguez-Jahnke ◽  
...  

As biopharmaceuticals, recombinant proteins have become indispensable tools in medicine. An increasing demand, not only in quantity but also in diversity, drives the constant development and improvement of production platforms. The N-glycosylation pattern on biopharmaceuticals plays an important role in activity, serum half-life and immunogenicity. Therefore, production platforms with tailored protein N-glycosylation are of great interest. Plant-based systems have already demonstrated their potential to produce pharmaceutically relevant recombinant proteins, although their N-glycan patterns differ from those in humans. Plants have shown great plasticity towards the manipulation of their glycosylation machinery, and some have already been glyco-engineered in order to avoid the attachment of plant-typical, putatively immunogenic sugar residues. This resulted in complex-type N-glycans with a core structure identical to the human one. Compared to humans, plants lack the ability to elongate these N-glycans with β1,4-linked galactoses and terminal sialic acids. However, these modifications, which require the activity of several mammalian enzymes, have already been achieved for Nicotiana benthamiana and the moss Physcomitrella. Here, we present the first step towards sialylation of recombinant glycoproteins in Physcomitrella, human β1,4-linked terminal N-glycan galactosylation, which was achieved by the introduction of a chimeric β1,4-galactosyltransferase (FTGT). This chimeric enzyme consists of the moss α1,4-fucosyltransferase transmembrane domain, fused to the catalytic domain of the human β1,4-galactosyltransferase. Stable FTGT expression led to the desired β1,4-galactosylation. However, additional pentoses of unknown identity were also observed. The nature of these pentoses was subsequently determined by Western blot and enzymatic digestion followed by mass spectrometric analysis and resulted in their identification as α-linked arabinoses. Since a pentosylation of β1,4-galactosylated N-glycans was reported earlier, e.g. on recombinant human erythropoietin produced in glyco-engineered Nicotiana tabacum, this phenomenon is of a more general importance for plant-based production platforms. Arabinoses, which are absent in humans, may prevent the full humanization of plant-derived products. Therefore, the identification of these pentoses as arabinoses is important as it creates the basis for their abolishment to ensure the production of safe biopharmaceuticals in plant-based systems.


Sign in / Sign up

Export Citation Format

Share Document