oxygen atoms
Recently Published Documents


TOTAL DOCUMENTS

2180
(FIVE YEARS 224)

H-INDEX

71
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Jonas Sarlauskas ◽  
Kamile Tulaite ◽  
Jelena Tamuliene

Abstract New data on 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine) fluorescence has been obtained using the Perkin–Elmer UV-vis-NIR spectrophotometer Lambda 950 experimental technique in combination with the extensive DFT-theory approach. Based on the results obtained, we revealed that theoptical properties of the molecule under study remain significantly unchanged when the number of oxygen substitutions decreases from 2 to 0. Here we also present the results of the study of the influence of acetonitrile and ethyl acetate on the fluorescence of tirapazamine with the different number of oxygen atoms. Results of our investigation indicate the formation of anion in the case of 3-amino-1,2,4-benzotriazine 1,4-dioxide with two oxygen atoms and their transformation to tirapazamine with one oxygen atom.


RSC Advances ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 640-647
Author(s):  
Ralf J. C. Locke ◽  
Felix C. Goerigk ◽  
Martin J. Schäfer ◽  
Henning A. Höppe ◽  
Thomas Schleid

The oxygen atoms of the two new compounds belong to ψ1-tetrahedral [SbO3]3− units, which are either vertex-connected to four-membered rings in YSb2O4Cl or to endless chains in YSb2O4Br. Eu3+- and Tb3+-doped samples show red or green luminescence.


2022 ◽  
Author(s):  
Jiahui Shen ◽  
Victor Terskikh ◽  
Jochem Struppe ◽  
Alia Hassan ◽  
Martine Monette ◽  
...  

We report synthesis and solid-state 17O NMR characterization of α-D-glucose for which all six oxygen atoms are site-specifically 17O-labeled. Solid-state 17O NMR spectra were recorded for α-D-glucose/NaCl/H2O (2/1/1) cocrystals under...


2021 ◽  
Author(s):  
Andrey A. Pershin ◽  
Alexei P. Torbin
Keyword(s):  

Author(s):  
Anna V. Pavlishchuk ◽  
Inna V. Vasylenko ◽  
Matthias Zeller ◽  
Anthony W. Addison

The core of the title complex, bis[hexaaquahemiaquapentakis(μ3-glycinehydroxamato)sulfatopentacopper(II)terbium(III)] sulfate hexahydrate, [TbCu5(SO4)(GlyHA)5(H2O)6.5]2(SO4)·6H2O (1), which belongs to the 15-metallacrown-5 family, consists of five glycinehydroxamate dianions (GlyHA2−; C2H4N2O2) and five copper(II) ions linked together forming a metallamacrocyclic moiety. The terbium(III) ion is connected to the centre of the metallamacrocycle through five hydroxamate oxygen atoms. The coordination environment of the Tb3+ ion is completed to an octacoordination level by oxygen atoms of a bidentate sulfate and an apically coordinated water molecule, while the copper(II) atoms are square-planar, penta- or hexacoordinate due to the apical coordination of water molecules. Continuous shape calculations indicate that the coordination polyhedron of the Tb3+ ion in 1 is best described as square antiprismatic. The positive charge of each pair of [TbCu5(GlyHA)5(H2O)6.5(SO4)]2 2+ fragments is compensated by a non-coordinated sulfate anion, which is located on an inversion center with 1:1 disordered oxygen atoms. Complex 1 is isomorphous with the previously reported compounds [LnCu5(GlyHA)5(SO4)(H2O)6.5]2(SO4), where Ln III = Pr, Nd, Sm, Eu, Gd, Dy and Ho.


2021 ◽  
Author(s):  
◽  
Amane Shiohara

<p>Quantum dots have applications in biomedical fields such as bio-imaging and drug delivery systems. This thesis describes research on silicon and germanium nanoparticles (quantum dots) synthesis and surface modification for biological applications. Purification methods of these quantum dots were also explored. In chapter 6 the application of silica nanoparticles into dry eye diagnosis was studied. The purpose of this research is to contribute the application of nanotechnology into biological fields. The crystalinity of the quantum dots was characterised by Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction analysis (SAED). The molecules on the surface of the quantum dots were characterised by Fourier Transform Infrared spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR).  Silicon quantum dots were synthesised with a microemulsion system and various types of molecules were attached on the surface of the silicon quantum dots. However, some of the capping molecules which have oxygen atoms tend to form bonds between oxygen and silicon. Therefore, in the later chapter (chapter 4) various chemical reactions were conducted on the molecules attached to the silicon quantum dots. The silicon quantum dots were capped with diene molecules and one of the double bonds was left on the terminal end. The terminal end double bonds were converted to the functional groups which contain oxygen atoms to form peptide bonds. In this way it was confirmed that it can reduce the risk of oxygen atoms to be attached on the surface of the silicon quantum dots. The molecules on the surface of the silicon quantum dots were characterised mainly by FTIR and ¹H NMR. Optical properties and cyto-toxicity of these silicon quantum dots were also measured and analysed depending on the surface molecules.  Two synthetic approaches were taken to produce germanium quantum dots. The first approach was the microemulsion system at room temperature. Different combinations of the surfactant and capping molecules were tested. For the second approach, high temperature bench top system was applied. In this method the bio-friendly molecules which have high boiling points were chosen as capping agents. The surface molecules were characterised by FTIR spectroscopy.  In chapter 6 the synthesis of dye molecules conjugated silica nanoparticles was described. The purpose of this research is to produce biologically safe nanoparticles which can be applied in dry eye diagnosis. Three different dyes were used to conjugate with the silica nanoparticles. Only fluorescein isothiocyanate (FITC) succeeded in conjugating with the nanoparticles. Optical properties of this sample were measured and compared with the free dye molecule. Also the sample was applied in human eyes to analyse the tear film layer.  An overall conclusion and future plans for the research were given in the last chapter.In this chapter, ideas of overcoming the problems and improving the techniques conducted in the research were described.</p>


2021 ◽  
Author(s):  
◽  
Amane Shiohara

<p>Quantum dots have applications in biomedical fields such as bio-imaging and drug delivery systems. This thesis describes research on silicon and germanium nanoparticles (quantum dots) synthesis and surface modification for biological applications. Purification methods of these quantum dots were also explored. In chapter 6 the application of silica nanoparticles into dry eye diagnosis was studied. The purpose of this research is to contribute the application of nanotechnology into biological fields. The crystalinity of the quantum dots was characterised by Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction analysis (SAED). The molecules on the surface of the quantum dots were characterised by Fourier Transform Infrared spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR).  Silicon quantum dots were synthesised with a microemulsion system and various types of molecules were attached on the surface of the silicon quantum dots. However, some of the capping molecules which have oxygen atoms tend to form bonds between oxygen and silicon. Therefore, in the later chapter (chapter 4) various chemical reactions were conducted on the molecules attached to the silicon quantum dots. The silicon quantum dots were capped with diene molecules and one of the double bonds was left on the terminal end. The terminal end double bonds were converted to the functional groups which contain oxygen atoms to form peptide bonds. In this way it was confirmed that it can reduce the risk of oxygen atoms to be attached on the surface of the silicon quantum dots. The molecules on the surface of the silicon quantum dots were characterised mainly by FTIR and ¹H NMR. Optical properties and cyto-toxicity of these silicon quantum dots were also measured and analysed depending on the surface molecules.  Two synthetic approaches were taken to produce germanium quantum dots. The first approach was the microemulsion system at room temperature. Different combinations of the surfactant and capping molecules were tested. For the second approach, high temperature bench top system was applied. In this method the bio-friendly molecules which have high boiling points were chosen as capping agents. The surface molecules were characterised by FTIR spectroscopy.  In chapter 6 the synthesis of dye molecules conjugated silica nanoparticles was described. The purpose of this research is to produce biologically safe nanoparticles which can be applied in dry eye diagnosis. Three different dyes were used to conjugate with the silica nanoparticles. Only fluorescein isothiocyanate (FITC) succeeded in conjugating with the nanoparticles. Optical properties of this sample were measured and compared with the free dye molecule. Also the sample was applied in human eyes to analyse the tear film layer.  An overall conclusion and future plans for the research were given in the last chapter.In this chapter, ideas of overcoming the problems and improving the techniques conducted in the research were described.</p>


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6840
Author(s):  
Anna Pietrzak ◽  
Jannick Guschlbauer ◽  
Piotr Kaszyński

Heteraadamantanes are compounds of interest due to their spectroscopic and magnetic properties, which make them promising materials for non-linear optics and semiconductors. Herein we report the comprehensive structural characterization of a new coordination compound of the formula [(µ-OH′)2(µ-OH″)4(O = P(Ph2)CH2CH2(Ph2)P = O)4{Fe(MeOH)}4](PF6)4(Cl)2 with the chelating ligand Ph2P(O)-CH2CH2-P(O)Ph2. The compound crystallizes as a polynuclear metal complex with the adamantane-like core [Fe4O6] in the space group I-43d of a cubic system. The single-crystal XRD analysis showed that the crystal contains one symmetrically independent octahedrally coordinated Fe atom in the oxidation state +3. The adamantine-like scaffold of the Fe complex is formed by hydroxy bridging oxygen atoms only. Hirshfeld surface analysis of the bridging oxygen atoms revealed two types of µ-OH groups, which differ in the degree of exposure and participation in long-range interactions. Additionally, the Hirshfeld surface analysis supported by the enrichment ratio calculations exhibited the high propensity of the title complex to form C-H…Cl, C-H…F and C-H…O interactions.


Sign in / Sign up

Export Citation Format

Share Document