Increase in proteins involved in mitochondrial fission, mitophagy, proteolysis and antioxidant response in type I endometrial cancer as an adaptive response to respiratory complex I deficiency

2017 ◽  
Vol 491 (1) ◽  
pp. 85-90 ◽  
Author(s):  
Antonella Cormio ◽  
Clara Musicco ◽  
Giuseppe Gasparre ◽  
Gennaro Cormio ◽  
Vito Pesce ◽  
...  
2019 ◽  
Vol 366 (12) ◽  
Author(s):  
Marina Verkhovskaya ◽  
Nikolai Belevich

ABSTRACT Fluorescent signals associated with Complex I (NADH:ubiquinone oxidoreductase type I) upon its reduction by NADH without added acceptors and upon NADH:ubiquinone oxidoreduction were studied. Two Complex I-associated redox-dependent signals were observed: with maximum emission at 400 nm (λex = 320 nm) and 526 nm (λex = 450 nm). The 400 nm signal derived from ubiquinol accumulated in Complex I/DDM (n-dodecyl β-D-maltopyranoside) micelles. The 526 nm redox signal unexpectedly derives mainly from FMN (flavin mononucleotide), whose fluorescence in oxidized protein is fully quenched, but arises transiently upon reduction of Complex I by NADH. The paradoxical flare-up of FMN fluorescence is discussed in terms of conformational changes in the catalytic site upon NADH binding. The difficulties in revealing semiquinone fluorescent signal are considered.


Planta ◽  
2011 ◽  
Vol 235 (3) ◽  
pp. 603-614 ◽  
Author(s):  
Reda Djebbar ◽  
Touhami Rzigui ◽  
Pierre Pétriacq ◽  
Caroline Mauve ◽  
Pierrick Priault ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1840
Author(s):  
Camilo Febres-Molina ◽  
Jorge A. Aguilar-Pineda ◽  
Pamela L. Gamero-Begazo ◽  
Haruna L. Barazorda-Ccahuana ◽  
Diego E. Valencia ◽  
...  

ND1 subunit possesses the majority of the inhibitor binding domain of the human mitochondrial respiratory complex I. This is an attractive target for the search for new inhibitors that seek mitochondrial dysfunction. It is known, from in vitro experiments, that some metabolites from Annona muricata called acetogenins have important biological activities, such as anticancer, antiparasitic, and insecticide. Previous studies propose an inhibitory activity of bovine mitochondrial respiratory complex I by bis-tetrahydrofurans acetogenins such as annocatacin B, however, there are few studies on its inhibitory effect on human mitochondrial respiratory complex I. In this work, we evaluate the in silico molecular and energetic affinity of the annocatacin B molecule with the human ND1 subunit in order to elucidate its potential capacity to be a good inhibitor of this subunit. For this purpose, quantum mechanical optimizations, molecular dynamics simulations and the molecular mechanics/Poisson–Boltzmann surface area (MM/PBSA) analysis were performed. As a control to compare our outcomes, the molecule rotenone, which is a known mitochondrial respiratory complex I inhibitor, was chosen. Our results show that annocatacin B has a greater affinity for the ND1 structure, its size and folding were probably the main characteristics that contributed to stabilize the molecular complex. Furthermore, the MM/PBSA calculations showed a 35% stronger binding free energy compared to the rotenone complex. Detailed analysis of the binding free energy shows that the aliphatic chains of annocatacin B play a key role in molecular coupling by distributing favorable interactions throughout the major part of the ND1 structure. These results are consistent with experimental studies that mention that acetogenins may be good inhibitors of the mitochondrial respiratory complex I.


Sign in / Sign up

Export Citation Format

Share Document