catalytic site
Recently Published Documents


TOTAL DOCUMENTS

978
(FIVE YEARS 130)

H-INDEX

73
(FIVE YEARS 6)

2022 ◽  
Vol 55 ◽  
pp. 101801
Author(s):  
Wenhui Huang ◽  
Li Zhang ◽  
Zheng Li ◽  
Xuhan Zhang ◽  
Xinglong Dong ◽  
...  

2021 ◽  
Author(s):  
Beat Vogeli ◽  
Alexandra Born ◽  
Janne Soetbeer ◽  
Morkos Henen ◽  
Frauke Breitgoff ◽  
...  

Abstract Pin1 is a two-domain cell regulator that isomerizes peptidyl-prolines. The catalytic domain (PPIase) and the other ligand-binding domain (WW) sample extended and compact conformations. Ligand binding changes the equilibrium of the interdomain conformations, but the conformational changes that lead to the altered domain sampling were unknown. Prior evidence has supported an interdomain allosteric mechanism. We recently introduced a magnetic resonance-based protocol that allowed us to determine the coupling of intra- and interdomain structural sampling in apo Pin1. Here, we describe ligand-specific conformational changes that occur upon binding of pCDC25c and FFpSPR. pCDC25c binding doubles the population of the extended states compared to the virtually identical populations of the apo and FFpSPR-bound forms. pCDC25c binding to the WW domain triggers conformational changes to propagate via the interdomain interface to the catalytic site, while FFpSPR binding displaces a helix in the PPIase that leads to repositioning of the PPIase catalytic loop.


2021 ◽  
Author(s):  
Taylor A Thomas ◽  
David M Smith

Proteasome Activator 28γ (PA28γ) is a member of the 11S family of proteasomal regulators that is constitutively expressed in the nucleus and is implicated in certain cancers, lupus, rheumatoid arthritis, and Poly-glutamine neurodegenerative diseases. However, how PA28γ functions in protein degradation remains unclear. Though PA28γs mechanism has been investigated for some time, many alternative hypotheses have not been tested: e.g. 1) substrate selection, 2) allosteric upregulation of the Trypsin-like catalytic site, 3) allosteric inhibition of the Chymotrypsin- and Caspase-like catalytic sites, 4) conversion of the Chymotrypsin- or Caspase-like sites to new Trypsin-like catalytic sites, and 5) gate-opening in combination with these. The purpose of this study was to conclusively determine how PA28γ regulates proteasome function. Here, we rigorously and definitively show that PA28γ uses an allosteric mechanism to upregulate the proteolytic activity of the 20S proteasomes Trypsin-like catalytic site. Using a constitutively open channel proteasome, we were able to dissociate gating affects from catalytic affects demonstrating that the PA28γ-increases the affinity (Km) and Vmax for Trypsin-like peptide substrates. Mutagenesis of PA28γ also reveals that it does not select for (i.e. filter) peptide substrates, and does not change the specificity of the other active sites to trypsin-like. Further, using Cryo-EM we were able to visualize the C7 symmetric PA28γ-20S proteasome complex at 4.4A validating it's expected 11S-like quaternary structure and proteasome binding mode. The results of this study provide unambiguous evidence that PA28γ functions by allosterically upregulating the T-L like site in the 20S proteasome.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7326
Author(s):  
Xin Meng ◽  
Ye Wang

Drug repurposing can quickly and effectively identify novel drug repurposing opportunities. The PA endonuclease catalytic site has recently become regarded as an attractive target for the screening of anti-influenza drugs. PA N-terminal (PAN) inhibitor can inhibit the entire PA endonuclease activity. In this study, we screened the effectivity of PAN inhibitors from the FDA database through in silico methods and in vitro experiments. PAN and mutant PAN-I38T were chosen as virtual screening targets for overcoming drug resistance. Gel-based PA endonuclease analysis determined that the drug lifitegrast can effectively inhibit PAN and PAN-I38T, when the IC50 is 32.82 ± 1.34 μM and 26.81 ± 1.2 μM, respectively. Molecular docking calculation showed that lifitegrast interacted with the residues around PA or PA-I38 T’s active site, occupying the catalytic site pocket. Both PAN/PAN-I38T and lifitegrast can acquire good equilibrium in 100 ns molecular dynamic simulation. Because of these properties, lifitegrast, which can effectively inhibit PA endonuclease activity, was screened through in silico and in vitro research. This new research will be of significance in developing more effective and selective drugs for anti-influenza therapy.


2021 ◽  
Vol 118 (49) ◽  
pp. e2113747118
Author(s):  
Heyjin Son ◽  
Jaeil Park ◽  
Injoo Hwang ◽  
Youngri Jung ◽  
Sangsu Bae ◽  
...  

CRISPR-Cas12a, an RNA-guided DNA targeting endonuclease, has been widely used for genome editing and nucleic acid detection. As part of the essential processes for both of these applications, the two strands of double-stranded DNA are sequentially cleaved by a single catalytic site of Cas12a, but the mechanistic details that govern the generation of complete breaks in double-stranded DNA remain to be elucidated. Here, using single-molecule fluorescence resonance energy transfer assay, we identified two conformational intermediates that form consecutively following the initial cleavage of the nontarget strand. Specifically, these two intermediates are the result of further unwinding of the target DNA in the protospacer-adjacent motif (PAM)–distal region and the subsequent binding of the target strand to the catalytic site. Notably, the PAM-distal DNA unwound conformation was stabilized by Mg2+ ions, thereby significantly promoting the binding and cleavage of the target strand. These findings enabled us to propose a Mg2+-dependent kinetic model for the mechanism whereby Cas12a achieves cleavage of the target DNA, highlighting the presence of conformational rearrangements for the complete cleavage of the double-stranded DNA target.


2021 ◽  
Author(s):  
X Edward Zhou ◽  
Kelly Suino-Powell ◽  
Chad R Schultz ◽  
Bilal Aleiwi ◽  
Joseph S Brunzelle ◽  
...  

Ornithine decarboxylase (ODC) is the rate-limiting enzyme for the synthesis of polyamines (PAs). PAs are oncometabolites that are required for proliferation, and pharmaceutical ODC inhibition is pursued for the treatment of hyperproliferative diseases, including cancer and infectious diseases. The most potent ODC inhibitor is 1-amino-oxy-3-aminopropane (APA). A previous crystal structure of an ODC–APA complex indicated that APA non-covalently binds ODC and its cofactor pyridoxal 5-phosphate (PLP) and functions by competing with the ODC substrate ornithine for binding to the catalytic site. We have revisited the mechanism of APA binding and ODC inhibition through a new crystal structure of APA-bound ODC, which we solved at 2.49 Å resolution. The structure unambiguously shows the presence of a covalent oxime between APA and PLP in the catalytic site, which we confirmed in solution by mass spectrometry. The stable oxime makes extensive interactions with ODC but cannot be catabolized, explaining APA’s high potency in ODC inhibition. In addition, we solved an ODC/PLP complex structure with citrate bound at the substrate binding pocket. These two structures provide new structural scaffolds for developing more efficient pharmaceutical ODC inhibitors.


ACS Catalysis ◽  
2021 ◽  
pp. 14110-14121
Author(s):  
Inacrist Geronimo ◽  
Pietro Vidossich ◽  
Marco De Vivo

2021 ◽  
Vol 12 (4) ◽  
pp. 4780-4846

COVID-19 pandemic continues with several works focused on the repositioning of drugs, vaccines, and antibodies against COVID-19, as well as new therapeutic targets on the cellular membrane (ACE2, NRP1, and TMPRSS2) that interacting with SARS-CoV-2 S-protein. This study proposes ten compounds (T1 - T10) selected by molecular docking using a library of nearly 500,000 compounds, these ten compounds have better interaction than Daclatasvir, Ombitasvir, Camostat, Edoxaban, NCGC00386477, Nafamostat, NCGC00386945, Otamixaban, Darexaban, Gabexate, Letaxaban, Argatroban, Sivelestat, NCGC00385043, and Bromhexine, and all of them have an inhibitory effect reported at TMPRSS2. The T1 - T10 compounds were selected by molecular docking in the catalytic site of TMPRSS2, which could hinder/block the interaction with the S-protein and ACE2. Therefore the initial/early stage of COVID-19 could be avoided or decreased by hindering the fusion between SARS-CoV-2 and the cell membrane and this way to develop a new adjuvant treatment against COVID-19.


Sign in / Sign up

Export Citation Format

Share Document