TVH-19, a synthetic peptide, induces mineralization of dental pulp cells in vitro and formation of tertiary dentin in vivo

2021 ◽  
Vol 534 ◽  
pp. 837-842
Author(s):  
Sili Han ◽  
Xiu Peng ◽  
Longjiang Ding ◽  
Junzhuo Lu ◽  
Zhenqi Liu ◽  
...  
2006 ◽  
Vol 97 (4) ◽  
pp. 836-848 ◽  
Author(s):  
Vincenzo D'Antò ◽  
Monica Cantile ◽  
Maria D'Armiento ◽  
Giulia Schiavo ◽  
Gianrico Spagnuolo ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 193 ◽  
Author(s):  
Chang Youp Ok ◽  
Sera Park ◽  
Hye-Ock Jang ◽  
Takashi Takata ◽  
Moon-Kyoung Bae ◽  
...  

Dental pulp plays an important role in the health of teeth. The aging of teeth is strongly related to the senescence of dental pulp cells. A novel adipokine, visfatin, is closely associated with cellular senescence. However, little is known about the effect of visfatin on the senescence of human dental pulp cells (hDPCs). Here, it was found that in vivo visfatin levels in human dental pulp tissues increase with age and are upregulated in vitro in hDPCs during premature senescence activated by H2O2, suggesting a correlation between visfatin and senescence. In addition, visfatin knockdown by small interfering RNA led to the reduction in hDPC senescence; however, treatment with exogenous visfatin protein induced the senescence of hDPCs along with increased NADPH consumption, which was reversed by FK866, a chemical inhibitor of visfatin. Furthermore, visfatin-induced senescence was associated with both the induction of telomere damage and the upregulation of senescence-associated secretory phenotype (SASP) factors as well as NF-κB activation, which were all inhibited by FK866. Taken together, these results demonstrate, for the first time, that visfatin plays a pivotal role in hDPC senescence in association with telomere dysfunction and the induction of SASP factors.


1997 ◽  
Vol 1 (3) ◽  
pp. 131-140 ◽  
Author(s):  
L. Stanislawski ◽  
J. P. Carreau ◽  
M. Pouchelet ◽  
Z. H. J. Chen ◽  
M. Goldberg

2008 ◽  
Vol 34 (9) ◽  
pp. 1057-1060 ◽  
Author(s):  
Yoshiyuki Yasuda ◽  
Masafumi Ogawa ◽  
Toshiya Arakawa ◽  
Tomoko Kadowaki ◽  
Takashi Saito

2017 ◽  
Vol 3 (2) ◽  
pp. 94-105 ◽  
Author(s):  
Morteza Haeri ◽  
Karen Sagomonyants ◽  
Mina Mina ◽  
Liisa T. Kuhn ◽  
A. Jon Goldberg

2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Xiangfen Li ◽  
Liu Wang ◽  
Qin Su ◽  
Ling Ye ◽  
Xuedong Zhou ◽  
...  

Human dental pulp cells (HDPCs) play a vital role in dentin formation and reparative dentinogenesis, which indicated their potential application in regenerative medicine. However, HDPCs, which can only be obtained from scarce human pulp tissues, also have a limited lifespan in vitro, and stem cells usually lose their original characteristics over a large number of passages. To overcome these challenges, we successfully immortalized human dental pulp cells using the piggyBac system which was employed to efficiently overexpress the SV40 T-Ag, and we then comprehensively described the cell biological behavior. The immortalized human dental pulp cells (iHDPCs) acquired long-term proliferative activity and expressed most HDPC markers. The iHDPCs maintained multiple differentiation potential and could be induced to differentiate into chondrogenic, osteogenic, and adipogenic cells in vitro. We also proved that the iHDPCs gained a stronger ability to migrate than the primary cells, while apoptosis was inhibited. Furthermore, highly proliferative iHDPCs displayed no oncogenicity when subcutaneously implanted into athymic nude mice. Finally, iHDPCs exhibited odontogenic differentiation ability and secreted dentin sialophosphoprotein (DSPP) when combined with a beta-tricalcium phosphate scaffold and bone morphogenetic protein-2 (BMP2) in vivo. Conclusively, the established iHDPCs are a valuable resource for mechanistic study of dental pulp cell differentiation and dental pulp injury repair, as well as for applications in tooth regeneration.


Sign in / Sign up

Export Citation Format

Share Document