Stem Cells International
Latest Publications


TOTAL DOCUMENTS

2504
(FIVE YEARS 870)

H-INDEX

59
(FIVE YEARS 14)

Published By Hindawi Publishing Corporation (Sage-Hindawi Access To Research)

1687-9678, 1687-966x

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Jun-Qin Li ◽  
Hui-Jie Jiang ◽  
Xiu-Yun Su ◽  
Li Feng ◽  
Na-Zhi Zhan ◽  
...  

Schwann cells have been found to promote osteogenesis by an unclear molecular mechanism. To better understand how Schwann cells accelerate osteogenesis, RNA-Seq and LC-MS/MS were utilized to explore the transcriptomic and metabolic response of MC3T3-E1 to Schwann cells. Osteogenic differentiation was determined by ALP staining. Lentiviruses were constructed to alter the expression of Mif (macrophage migration inhibitory factor) in Schwann cells. Western blot (WB) analysis was employed to detect the protein expression. The results of this study show that Mif is essential for Schwann cells to promote osteogenesis, and its downstream CD74/FOXO1 is also involved in the promotion of Schwann cells on osteogenesis. Further, Schwann cells regulate amino acid metabolism and lipid metabolism in preosteoblasts. These findings unveil the mechanism for Schwann cells to promote osteogenesis where Mif is a key factor.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Bruna Cristina Falavinha ◽  
María Julia Barisón ◽  
Carmen Lúcia Kuniyoshi Rebelatto ◽  
Bruna Hilzendeger Marcon ◽  
Alessandra de Melo Aguiar ◽  
...  

Dysfunctions in adipose tissue cells are responsible for several obesity-related metabolic diseases. Understanding the process of adipocyte formation is thus fundamental for understanding these diseases. The adipocyte differentiation of adipose-derived stem/stromal cells (ADSCs) showed a reduction in the mRNA level of the interleukin 21 receptor (IL21R) during this process. Although the receptor has been associated with metabolic diseases, few studies have examined its function in stem cells. In this study, we used confocal immunofluorescence assays to determine that IL21R colocalizes with mitochondrial protein ATP5B, ALDH4A1, and the nucleus of human ADSCs. We demonstrated that silencing and overexpression of IL21R did not affect the cell proliferation and mitochondrial activity of ADSCs. However, IL21R silencing did reduce ADSC adipogenic capacity. Further studies are needed to understand the mechanism involved between IL21R and the adipogenic differentiation process.


2022 ◽  
Vol 2022 ◽  
pp. 1-23
Author(s):  
E. Russo ◽  
M. Caprnda ◽  
P. Kruzliak ◽  
P. G. Conaldi ◽  
C. V. Borlongan ◽  
...  

Chondropathies are increasing worldwide, but effective treatments are currently lacking. Mesenchymal stromal cell (MSCs) transplantation represents a promising approach to counteract the degenerative and inflammatory environment characterizing those pathologies, such as osteoarthritis (OA) and rheumatoid arthritis (RA). Umbilical cord- (UC-) MSCs gained increasing interest due to their multilineage differentiation potential, immunomodulatory, and anti-inflammatory properties as well as higher proliferation rates, abundant supply along with no risks for the donor compared to adult MSCs. In addition, UC-MSCs are physiologically adapted to survive in an ischemic and nutrient-poor environment as well as to produce an extracellular matrix (ECM) similar to that of the cartilage. All these characteristics make UC-MSCs a pivotal source for a stem cell-based treatment of chondropathies. In this review, the regenerative potential of UC-MSCs for the treatment of cartilage diseases will be discussed focusing on in vitro, in vivo, and clinical studies.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Taiqiu Chen ◽  
Pengfei Li ◽  
Jincheng Qiu ◽  
Wenjun Hu ◽  
Shaoguang Li ◽  
...  

Intervertebral disc degeneration (IDD) is a degenerative disease that is characterized by decreased matrix synthesis and extra degradation, nucleus pulposus cells (NPCs) apoptosis, and infiltration of inflammatory factors. Aloin, a colored compound from aloe plants, has been shown to be effective against skeletal degenerative diseases, but it is unclear whether it is protective against IDD. Herein, we investigated the role of aloin in NPCs. In our study, the upregulation of proinflammatory factors, apoptosis, and unbalanced matrix metabolism were observed in degenerative NP tissues. We found that aloin had a curative effect on extracellular matrix metabolism and apoptosis in TNF-alpha- (TNF-α-) treated NPCs by inhibiting oxidative stress and the proinflammatory factor expression. Further investigation revealed that aloin treatment suppressed the TAK1/NF-κB pathway. Moreover, the expression level of the NLPR3 inflammasome was downregulated after aloin treatment in TNF-α-treated NPCs. In summary, our results demonstrated that aloin treatment can reverse TNF-α-induced unbalanced matrix metabolism and apoptosis of NPCs via the TAK1/NF-κB/NLRP3 axis. This study supports that aloin can be a promising therapeutic agent for IDD.


2022 ◽  
Vol 2022 ◽  
pp. 1-20
Author(s):  
Zi Y. Kok ◽  
Nadia Y. A. Alaidaroos ◽  
Amr Alraies ◽  
John S. Colombo ◽  
Lindsay C. Davies ◽  
...  

Human dental pulp stem/stromal cells (hDPSCs) derived from the permanent secondary dentition are recognised to possess certain advantageous traits, which support their potential use as a viable source of mesenchymal stem/stromal cells (MSCs) for regenerative medicine-based applications. However, the well-established heterogeneous nature of hDPSC subpopulations, coupled with their limited numbers within dental pulp tissues, has impeded our understanding of hDPSC biology and the translation of sufficient quantities of these cells from laboratory research, through successful therapy development and clinical applications. This article reviews our current understanding of hDPSC biology and the evidence underpinning the molecular basis of their heterogeneity, which may be exploited to distinguish individual subpopulations with specific or superior characteristics for regenerative medicine applications. Pertinent unanswered questions which still remain, regarding the developmental origins, hierarchical organisation, and stem cell niche locations of hDPSC subpopulations and their roles in hDPSC heterogeneity and functions, will further be explored. Ultimately, a greater understanding of how key features, such as specific cell surface, senescence and other relevant genes, and protein and metabolic markers, delineate between hDPSC subpopulations with contrasting stemness, proliferative, multipotency, immunomodulatory, anti-inflammatory, and other relevant properties is required. Such knowledge advancements will undoubtedly lead to the development of novel screening, isolation, and purification strategies, permitting the routine and effective identification, enrichment, and expansion of more desirable hDPSC subpopulations for regenerative medicine-based applications. Furthermore, such innovative measures could lead to improved cell expansion, manufacture, and banking procedures, thereby supporting the translational development of hDPSC-based therapies in the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fang He ◽  
Guanping Yao

Ginsenoside Rg1 (Rg1), a purified, active component of the root or stem of ginseng, exerts positive effects on mesenchymal stem cells (MSCs). Many recent studies have found that hematopoietic stem cells (HSCs), which can develop into hematopoietic progenitor cells (HPCs) and mature blood cells, are another class of heterogeneous adult stem cells that can be regulated by Rg1. Rg1 can affect HSC proliferation and migration, regulate HSC/HPC differentiation, and alleviate HSC aging, and these findings potentially provide new strategies to improve the HSC homing rate in HSC transplantation and for the treatment of graft-versus-host disease (GVHD) or other HSC/HPC dysplasia-induced diseases. In this review, we used bioinformatics methods, molecular docking verification, and a literature review to systematically explore the possible molecular pharmacological activities of Rg1 through which it regulates HSCs/HPCs.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yu Ye ◽  
Yue Ke ◽  
Liu Liu ◽  
Tong Xiao ◽  
Jinhua Yu

The ability of human periodontal ligament stem cells (PDLSCs) to differentiate into osteoblasts is significant in periodontal regeneration tissue engineering. In this study, we explored the role and mechanism of circRNA FAT1 (circFAT1) in the osteogenic differentiation of human PDLSCs. The proliferation capacity of PDLSCs was evaluated by EdU and CCK-8 assay. The abilities of circFAT1 and miR-4781-3p in regulating PDLSC differentiation were analyzed by western blot, reverse transcription-polymerase chain reaction (RT-PCR), alkaline phosphatase (ALP), and Alizarin red staining (ARS). A nucleocytoplasmic separation experiment was utilized for circFAT1 localization. A dual-luciferase reporter assay confirmed the binding relationship between miR-4781-3p and circFAT1. It was showed that circFAT1 does not affect the proliferation of PDLSCs. The osteogenic differentiation of PDLSCs was benefited from circFAT1, which serves as a miRNA sponge for miR-4781-3p targeting SMAD5. Both knockdown of circFAT1 and overexpression of miR-4781-3p suppressed the osteogenic differentiation of PDLSCs. Thus, circFAT1 might be considered as a potential target of PDLSCs mediated periodontal bone regeneration.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Na Li ◽  
Zhaoyu Du ◽  
Yunxiang Li ◽  
Wenjing Xu ◽  
Yumei Yang ◽  
...  

Embryonic stem cells (ESCs) are pluripotent stem cells that have indefinite self-renewal capacities under appropriate culture conditions in vitro. The pluripotency maintenance and proliferation of these cells are delicately governed by the concert effect of a complex transcriptional regulatory network. Herein, we discovered that p57Kip2 (p57), a cyclin-dependent kinase inhibitor canonically inhibiting cell proliferation, played a role in suppressing the pluripotency state of mouse ESCs (mESCs). p57 knockdown significantly stimulated the expressions of core pluripotency factors NANOG, OCT4, and SOX2, while p57 overexpression inhibited the expressions of these factors in mESCs. In addition, consistent with its function in somatic cells, p57 suppressed mESC proliferation. Further analysis showed that p57 could interact with and contribute to the activation of p53 in mESCs. In conclusion, the present study showed that p57 could antagonize the pluripotency state and the proliferation process of mESCs. This finding uncovers a novel function of p57 and provides new evidence for elucidating the complex regulatory of network of mESC fate.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Qi Zhang ◽  
Min Li ◽  
Wenbo Hu ◽  
Xin Wang ◽  
Jinlian Hu

Spider silks are increasingly gaining interest for potential use as biomaterials in tissue engineering and biomedical applications. Owing to their facile and versatile processability in native and regenerated forms, they can be easily tuned via chemical synthesis or recombinant technologies to address specific issues required for applications. In the past few decades, native spider silk and recombinant silk materials have been explored for a wide range of applications due to their superior strength, toughness, and elasticity as well as biocompatibility, biodegradation, and nonimmunogenicity. Herein, we present an overview of the recent advances in spider silk protein that fabricate biomaterials for tissue engineering and regenerative medicine. Beginning with a brief description of biological and mechanical properties of spidroin-based materials and the cellular regulatory mechanism, this review summarizes various types of spidroin-based biomaterials from genetically engineered spider silks and their prospects for specific biomedical applications (e.g., lung tissue engineering, vascularization, bone and cartilage regeneration, and peripheral nerve repair), and finally, we prospected the development direction and manufacturing technology of building more refined and customized spidroin-based protein scaffolds.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bernardo Bonilauri ◽  
Amanda C. Camillo-Andrade ◽  
Marlon D. M. Santos ◽  
Juliana de S. da G. Fischer ◽  
Paulo C. Carvalho ◽  
...  

Background. Obesity is characterized as a disease that directly affects the whole-body metabolism and is associated with excess fat mass and several related comorbidities. Dynamics of adipocyte hypertrophy and hyperplasia play an important role in health and disease, especially in obesity. Human adipose-derived stem cells (hASC) represent an important source for understanding the entire adipogenic differentiation process. However, little is known about the triggering step of adipogenesis in hASC. Here, we performed a proteogenomic approach for understanding the protein abundance alterations during the initiation of the adipogenic differentiation process. Methods. hASC were isolated from adipose tissue of three donors and were then characterized and expanded. Cells were cultured for 24 hours in adipogenic differentiation medium followed by protein extraction. We used shotgun proteomics to compare the proteomic profile of 24 h-adipogenic, differentiated, and undifferentiated hASC. We also used our previous next-generation sequencing data (RNA-seq) of the total and polysomal mRNA fractions of hASC to study posttranscriptional regulation during the initial steps of adipogenesis. Results. We identified 3420 proteins out of 48,336 peptides, of which 92 proteins were exclusively identified in undifferentiated hASC and 53 proteins were exclusively found in 24 h-differentiated cells. Using a stringent criterion, we identified 33 differentially abundant proteins when comparing 24 h-differentiated and undifferentiated hASC (14 upregulated and 19 downregulated, respectively). Among the upregulated proteins, we shortlisted several adipogenesis-related proteins. A combined analysis of the proteome and the transcriptome allowed the identification of positive correlation coefficients between proteins and mRNAs. Conclusions. These results demonstrate a specific proteome profile related to adipogenesis at the beginning (24 hours) of the differentiation process in hASC, which advances the understanding of human adipogenesis and obesity. Adipogenic differentiation is finely regulated at the transcriptional, posttranscriptional, and posttranslational levels.


Sign in / Sign up

Export Citation Format

Share Document