scholarly journals Linking Enzyme Conformational Dynamics To Catalytic Function With Single-molecule FRET

2009 ◽  
Vol 96 (3) ◽  
pp. 73a-74a
Author(s):  
Yan-Wen Tan ◽  
Jeffrey A. Hanson ◽  
Jason Brokaw ◽  
Jhih-Wei Chu ◽  
Haw Yang
2013 ◽  
Vol 117 (50) ◽  
pp. 16105-16109 ◽  
Author(s):  
Roman Tsukanov ◽  
Toma E. Tomov ◽  
Yaron Berger ◽  
Miran Liber ◽  
Eyal Nir

2018 ◽  
Vol 37 (21) ◽  
Author(s):  
Florence Husada ◽  
Kiran Bountra ◽  
Konstantinos Tassis ◽  
Marijn Boer ◽  
Maria Romano ◽  
...  

2011 ◽  
Vol 100 (3) ◽  
pp. 474a-475a
Author(s):  
Markus Richert ◽  
Dymitro Rodnin ◽  
Carola S. Hengstenberg ◽  
Thomas Peulen ◽  
Alessandro Valeri ◽  
...  

2021 ◽  
Vol 20 ◽  
pp. S299-S300
Author(s):  
P. Liyanage ◽  
K. Mun ◽  
S. Yarlagadda ◽  
Y. Huang ◽  
A. Naren

2017 ◽  
Author(s):  
Mengyi Yang ◽  
Sijia Peng ◽  
Ruirui Sun ◽  
Jingdi Lin ◽  
Nan Wang ◽  
...  

SummaryOff-target binding and cleavage by Cas9 pose as major challenges in its applications. How conformational dynamics of Cas9 governs its nuclease activity under on- and off-target conditions remains largely unknown. Here, using intra-molecular single molecule fluorescence resonance energy transfer measurements, we revealed that Cas9 in apo, sgRNA-bound, and dsDNA/sgRNA-bound forms all spontaneously transits between three major conformational states, mainly reflecting significant conformational mobility of the catalytic HNH domain. We furthermore uncovered a surprising long-range allosteric communication between the HNH domain and RNA/DNA heteroduplex at the PAM-distal end to ensure correct positioning of the catalytic site, which demonstrated a unique proofreading mechanism served as the last checkpoint before DNA cleavage. Several Cas9 residues were likely to mediate the allosteric communication and proofreading step. Modulating interactions between Cas9 and heteroduplex at the distal end by introducing mutations on these sites provides an alternative route to improve and optimize the CRISPR/Cas9 toolbox.


2018 ◽  
Vol 207 ◽  
pp. 251-265
Author(s):  
Subhas C. Bera ◽  
Tapas Paul ◽  
A. N. Sekar Iyengar ◽  
Padmaja P. Mishra

We have investigated the isomerization dynamics and plausible energy landscape of 4-way Holliday junctions (4WHJs) bound to integration host factor (IHF, a DNA binding protein), considering the effect of applied external force, by single-molecule FRET methods.


2020 ◽  
Author(s):  
Hisham Mazal ◽  
Marija Iljina ◽  
Inbal Riven ◽  
Gilad Haran

AbstractAAA+ ring-shaped machines, such as ClpB and Hsp104, mediate substrate translocation through their central channel by a set of pore loops. Recent structural studies suggested a universal hand-over-hand translocation mechanism, in which pore loops are moving rigidly in tandem with their corresponding subunits. However, functional and biophysical studies are in discord with this model. Here, we directly measure the real-time dynamics of the pore loops of ClpB and their response to substrate binding, using single-molecule FRET spectroscopy. All pore loops undergo large-amplitude fluctuations on the microsecond timescale, and change their conformation upon interaction with substrate proteins. Pore-loop conformational dynamics are modulated by nucleotides and strongly correlate with disaggregation activity. The differential behavior of the pore loops along the axial channel points to a fast Brownian-ratchet translocation mechanism, which likely acts in parallel to the much slower hand-over-hand process.


Sign in / Sign up

Export Citation Format

Share Document