dna hairpins
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 36)

H-INDEX

39
(FIVE YEARS 4)

2021 ◽  
pp. 339006
Author(s):  
Xiaohe Zhang ◽  
Guoni Huang ◽  
Ye Zhang ◽  
Bo Situ ◽  
Shihua Luo ◽  
...  

2021 ◽  
Vol 10 (26) ◽  
Author(s):  
Alyssa A. Pratt ◽  
Ellis L. Torrance ◽  
George W. Kasun ◽  
Kenneth M. Stedman ◽  
Ignacio de la Higuera

Nucleic acid secondary structures play important roles in regulating biological processes. StemLoop-Finder is a computational tool to recognize and annotate conserved structural motifs in large data sets. The program is optimized for the detection of stem-loop structures that may serve as origins of replication in circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Anurag Upadhyaya ◽  
Sanjay Kumar
Keyword(s):  

Author(s):  
Emmaline R. Lorenzo ◽  
Jacob H. Olshansky ◽  
Daniel S. D. Abia ◽  
Matthew D. Krzyaniak ◽  
Ryan M. Young ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alexandra Kühnlein ◽  
Simon A Lanzmich ◽  
Dieter Braun

Can replication and translation emerge in a single mechanism via self-assembly? The key molecule, transfer RNA (tRNA), is one of the most ancient molecules and contains the genetic code. Our experiments show how a pool of oligonucleotides, adapted with minor mutations from tRNA, spontaneously formed molecular assemblies and replicated information autonomously using only reversible hybridization under thermal oscillations. The pool of cross-complementary hairpins self-selected by agglomeration and sedimentation. The metastable DNA hairpins bound to a template and then interconnected by hybridization. Thermal oscillations separated replicates from their templates and drove an exponential, cross-catalytic replication. The molecular assembly could encode and replicate binary sequences with a replication fidelity corresponding to 85–90 % per nucleotide. The replication by a self-assembly of tRNA-like sequences suggests that early forms of tRNA could have been involved in molecular replication. This would link the evolution of translation to a mechanism of molecular replication.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Feng Li ◽  
Wenting Yu ◽  
Jiaojiao Zhang ◽  
Yuhang Dong ◽  
Xiaohui Ding ◽  
...  

AbstractDNA nanostructures have been demonstrated as promising carriers for gene delivery. In the carrier design, spatiotemporally programmable assembly of DNA under nanoconfinement is important but has proven highly challenging due to the complexity–scalability–error of DNA. Herein, a DNA nanotechnology-based strategy via the cascade hybridization chain reaction (HCR) of DNA hairpins in polymeric nanoframework has been developed to achieve spatiotemporally programmable assembly of DNA under nanoconfinement for precise siRNA delivery. The nanoframework is prepared via precipitation polymerization with Acrydite-DNA as cross-linker. The potential energy stored in the loops of DNA hairpins can overcome the steric effect in the nanoframework, which can help initiate cascade HCR of DNA hairpins and achieve efficient siRNA loading. The designer tethering sequence between DNA and RNA guarantees a triphosadenine triggered siRNA release specifically in cellular cytoplasm. Nanoframework provides stability and ease of functionalization, which helps address the complexity–scalability–error of DNA. It is exemplified that the phenylboronate installation on nanoframework enhanced cellular uptake and smoothed the lysosomal escape. Cellular results show that the siRNA loaded nanoframework down-regulated the levels of relevant mRNA and protein. In vivo experiments show significant therapeutic efficacy of using siPLK1 loaded nanoframework to suppress tumor growth.


Author(s):  
Vinoth Sundar Rajan ◽  
Xavier Viader-Godoy ◽  
Yii-Lih Lin ◽  
Uttama Dutta ◽  
Felix Ritort ◽  
...  

We use mechanical unfolding of single DNA hairpins with modified bases to accurately assess intra- and intermolecular forces in nucleic acids. As expected, the modification stabilizes the hybridized hairpin, but...


2020 ◽  
Author(s):  
Luning Yu ◽  
Xinqi Kang ◽  
Mohammad Amin Alibakhshi ◽  
Mikhail Pavlenok ◽  
Michael Niederweis ◽  
...  

AbstractUse of chaotropic reagents is common in biophysical characterization of biomolecules. When the study involves transmembrane protein channels, the stability of the protein channel and supporting bilayer membrane must be considered. In this letter we show that planar bilayers composed of poly(1,2-butadiene)-b-poly(ethylene oxide) diblock copolymer are stable and leak-free at high guanidinium chloride concentrations, in contrast to diphytanoyl phosphatidylcholine bilayers which exhibit deleterious leakage under similar conditions. Further, insertion and functional analysis of channels such as α-hemolysin and MspA are straightforward in these polymer membranes. Finally, we demonstrate that α-hemolysin channels maintain their structural integrity at 2M guanidinium chloride concentrations using blunt DNA hairpins as molecular reporters.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Bin-zhong Li ◽  
Christopher D Putnam ◽  
Richard David Kolodner

Foldback inversions, also called inverted duplications, have been observed in human genetic diseases and cancers. Here, we used a Saccharomyces cerevisiae genetic system that generates gross chromosomal rearrangements (GCRs) mediated by foldback inversions combined with whole-genome sequencing to study their formation. Foldback inversions were mediated by formation of single-stranded DNA hairpins. Two types of hairpins were identified: small-loop hairpins that were suppressed by MRE11, SAE2, SLX1, and YKU80 and large-loop hairpins that were suppressed by YEN1, TEL1, SWR1, and MRC1. Analysis of CRISPR/Cas9-induced double strand breaks (DSBs) revealed that long-stem hairpin-forming sequences could form foldback inversions when proximal or distal to the DSB, whereas short-stem hairpin-forming sequences formed foldback inversions when proximal to the DSB. Finally, we found that foldback inversion GCRs were stabilized by secondary rearrangements, mostly mediated by different homologous recombination mechanisms including single-strand annealing; however, POL32-dependent break-induced replication did not appear to be involved forming secondary rearrangements.


Sign in / Sign up

Export Citation Format

Share Document