scholarly journals The Role of Thin Filament Cooperativity in Cardiac Length-Dependent Calcium Activation

2010 ◽  
Vol 99 (9) ◽  
pp. 2978-2986 ◽  
Author(s):  
Gerrie P. Farman ◽  
Edward J. Allen ◽  
Kelly Q. Schoenfelt ◽  
Peter H. Backx ◽  
Pieter P. de Tombe
2019 ◽  
Vol 116 (3) ◽  
pp. 551a
Author(s):  
Balazs Kiss ◽  
Paola Tonino ◽  
Justin Kolb ◽  
John E. Smith ◽  
Henk L. Granzier

2003 ◽  
Vol 85 (3) ◽  
pp. 1775-1786 ◽  
Author(s):  
Bo Liang ◽  
Ying Chen ◽  
Chien-Kao Wang ◽  
Zhaoxiong Luo ◽  
Michael Regnier ◽  
...  

2020 ◽  
Vol 118 (3) ◽  
pp. 122a
Author(s):  
Connor Tyree ◽  
Kyra Peczkowski ◽  
Paul M. Janssen ◽  
Jill Rafael-Fortney ◽  
Jonathan P. Davis

2008 ◽  
Vol 94 (4) ◽  
pp. 1341-1347 ◽  
Author(s):  
Masłgorzata Śliwińska ◽  
Radosław Skórzewski ◽  
Joanna Moraczewska

2014 ◽  
Vol 206 (4) ◽  
pp. 559-572 ◽  
Author(s):  
Isabelle Fernandes ◽  
Frieder Schöck

Mutations in nebulin, a giant muscle protein with 185 actin-binding nebulin repeats, are the major cause of nemaline myopathy in humans. Nebulin sets actin thin filament length in sarcomeres, potentially by stabilizing thin filaments in the I-band, where nebulin and thin filaments coalign. However, the precise role of nebulin in setting thin filament length and its other functions in regulating power output are unknown. Here, we show that Lasp, the only member of the nebulin family in Drosophila melanogaster, acts at two distinct sites in the sarcomere and controls thin filament length with just two nebulin repeats. We found that Lasp localizes to the Z-disc edges to control I-band architecture and also localizes at the A-band, where it interacts with both actin and myosin to set proper filament spacing. Furthermore, introducing a single amino acid change into the two nebulin repeats of Lasp demonstrated different roles for each domain and established Lasp as a suitable system for studying nebulin repeat function.


Physiology ◽  
2007 ◽  
Vol 22 (2) ◽  
pp. 73-80 ◽  
Author(s):  
Aaron C. Hinken ◽  
R. John Solaro

Molecular motors housed in myosins of the thick filament react with thin-filament actins and promote force and shortening in the sarcomeres. However, other actions of these motors sustain sarcomeric activation by cooperative feedback mechanisms in which the actin-myosin interaction promotes thin-filament activation. Mechanical feedback also affects the actin-myosin interaction. We discuss current concepts of how these relatively under-appreciated actions of molecular motors are responsible for modulation of the ejection time and isovolumic relaxation in the beating heart.


Biomolecules ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 79
Author(s):  
Francesca Ronca ◽  
Antonio Raggi

Multiple muscle-specific isoforms of the Zn2+ metalloenzyme AMP deaminase (AMPD) have been identified based on their biochemical and genetic differences. Our previous observations suggested that the metal binding protein histidine-proline-rich glycoprotein (HPRG) participates in the assembly and maintenance of skeletal muscle AMP deaminase (AMPD1) by acting as a zinc chaperone. The evidence of a role of millimolar-strength phosphate in stabilizing the AMPD-HPRG complex of both AMPD1 and cardiac AMP deaminase (AMPD3) is suggestive of a physiological mutual dependence between the two subunit components with regard to the stability of the two isoforms of striated muscle AMPD. The observed influence of the HPRG content on the catalytic behavior of the two enzymes further strengthens this hypothesis. Based on the preferential localization of HPRG at the sarcomeric I-band and on the presence of a Zn2+ binding motif in the N-terminal regions of fast TnT and of the AMPD1 catalytic subunit, we advance the hypothesis that the Zn binding properties of HPRG could promote the association of AMPD1 to the thin filament.


Sign in / Sign up

Export Citation Format

Share Document