single amino acid change
Recently Published Documents


TOTAL DOCUMENTS

317
(FIVE YEARS 44)

H-INDEX

51
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Choon-Tak Kwon ◽  
Lingli Tang ◽  
Xingang Wang ◽  
Iacopo Gentile ◽  
Anat Hendelman ◽  
...  

Gene duplications are a hallmark of plant genome evolution and a foundation for genetic interactions that shape phenotypic diversity. Compensation is a major form of paralog interaction, but how compensation relationships change as allelic variation accumulates is unknown. Here, we leveraged genomics and genome editing across the Solanaceae family to capture the evolution of compensating paralogs. Mutations in the stem cell regulator CLV3 cause floral organs to overproliferate in many plants. In tomato, this phenotype is partially suppressed by transcriptional upregulation of a closely related paralog. Tobacco lost this paralog, resulting in no compensation and extreme clv3 phenotypes. Strikingly, the paralogs of petunia and groundcherry nearly completely suppress clv3, indicating a potent ancestral state of compensation. Cross-species transgenic complementation analyses show this potent compensation partially degenerated in tomato due to a single amino acid change in the paralog and cis-regulatory variation that limits its transcriptional upregulation. Our findings show how genetic interactions are remodeled following duplications, and suggest that dynamic paralog evolution is widespread over short time scales and impacts phenotypic variation from natural and engineered mutations.


2021 ◽  
Author(s):  
Joseph A Ayariga ◽  
Robert Villafane

The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly shifted the attention of researchers to critically investigate most viruses to understand specific characteristics that impart their virulence. For instance, the SARS-CoV-2 has undergone several mutations, with some variants classified as variants of concern, e.g., the Omicron and Delta variant of SARS-CoV-2 are known for their rapid transmission and antigenicity due to mutation in the Spike protein. P22 bacteriophage is a bacterial virus that has a tailspike protein (TSP) that performs similar functions as the Spike protein of SARS-COV-2. We previously carried out a site-directed mutagenesis of the P22 TSP to bear disruptive mutations in the hydrophobic core of the N-terminal Domain (NTD), then partially characterized the properties of the mutant TSPs. In this process, the valine patch (triple valine residues that formed a hydrophobic core) was replaced with charged amino acids (Asp or lysine) or hydrophobic amino acids (Leucine or isoleucine). Some of the mutant TSPs characterized showed significant differences in migration in both native and SDS-PAGE. Mutants with such disruptive mutation are known to show non-native properties, and as expected, most of these mutants obtained showed significantly different properties from the WT P22 TSP. In this work, we further characterized these mutant species by computational and in vitro assays to demonstrate the validity of our previous inference that the valine patch is a critical player in the stability of the N-terminal domain of the P22 TSP.


2021 ◽  
Author(s):  
Andrew Redd ◽  
Alessandra Nardin ◽  
Hassen Kared ◽  
Evan M Bloch ◽  
Brian Abel ◽  
...  

There is a growing concern that ongoing evolution of SARS-CoV-2 could lead to variants of concern (VOC) that are capable of avoiding some or all of the multi-faceted immune response generated by both prior infection or vaccination, with the recently described B.1.1.529 (Omicron) VOC being of particular interest. Peripheral blood mononuclear cell samples from PCR-confirmed, recovered COVID-19 convalescent patients (n=30) infected with SARS-CoV-2 in the United States collected in April and May 2020 who possessed at least one or more of six different HLA haplotypes were selected for examination of their anti-SARS-CoV-2 CD8+ T-cell responses using a multiplexed peptide-MHC tetramer staining approach. This analysis examined if the previously identified viral epitopes targeted by CD8+ T-cells in these individuals (n=52 distinct epitopes) are mutated in the newly described Omicron VOC (n=50 mutations). Within this population, only one low-prevalence epitope from the Spike protein restricted to two HLA alleles and found in 2/30 (7%) individuals contained a single amino acid change associated with the Omicron VOC. These data suggest that virtually all individuals with existing anti-SARS-CoV-2 CD8+ T-cell responses should recognize the Omicron VOC, and that SARS-CoV-2 has not evolved extensive T-cell escape mutations at this time.


Author(s):  
Brian A. Smith ◽  
Kevin Dougherty ◽  
Meara Clark ◽  
David A. Baltrus

Horizontally transferred elements, such as plasmids, can burden host cells with various metabolic and fitness costs and may lead to other potentially detrimental phenotypic effects. Acquisition of the Pseudomonas syringae megaplasmid pMPPla107 by various Pseudomonads causes sensitivity to a growth-inhibiting substance that is produced in cultures by Pseudomonads during growth under standard laboratory conditions. After approximately 500 generations of laboratory passage of Pseudomonas stutzeri populations containing pMPPla107, strains from two out of six independent passage lines displayed resistance to this inhibitory agent. Resistance was transferable and is, therefore, associated with mutations occurring on pMPPla107. Resequencing experiments demonstrated that resistance is likely due to a large deletion on the megaplasmid in one line, and to a nonsynonymous change in an uncharacterized megaplasmid locus in the other strain. We further used allele exchange experiments to confirm that resistance is due to this single amino acid change in a previously uncharacterized megaplasmid protein, which we name SkaA. These results provide further evidence that costs and phenotypic changes associated with horizontal gene transfer can be compensated through single mutational events and emphasize the power of experimental evolution and resequencing to better understand the genetic basis of evolved phenotypes. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei-Ching Liang ◽  
Jianping Yin ◽  
Patrick Lupardus ◽  
Jianhuan Zhang ◽  
Kelly M. Loyet ◽  
...  

AbstractAntibody function is typically entirely dictated by the Complementarity Determining Regions (CDRs) that directly bind to the antigen, while the framework region acts as a scaffold for the CDRs and maintains overall structure of the variable domain. We recently reported that the rabbit monoclonal antibody 4A11 (rbt4A11) disrupts signaling through both TGFβ2 and TGFβ3 (Sun et al. in Sci Transl Med, 2021. https://doi.org/10.1126/scitranslmed.abe0407). Here, we report a dramatic, unexpected discovery during the humanization of rbt4A11 where, two variants of humanized 4A11 (h4A11), v2 and v7 had identical CDRs, maintained high affinity binding to TGFβ2/3, yet exhibited distinct differences in activity. While h4A11.v7 completely inhibited TGFβ2/3 signaling like rbt4A11, h4A11.v2 did not. We solved crystal structures of TGFβ2 complexed with Fab fragments of h4A11.v2 or h4A11.v7 and identified a novel interaction between the two heavy chain molecules in the 2:2 TGFb2:h4A11.v2-Fab complex. Further characterization revealed that framework residue variations at either position 19, 79 or 81 (Kabat numbering) of the heavy chain strikingly converts h4A11.v2 into an inhibitory antibody. Our work suggests that in addition to CDRs, framework residues and interactions between Fabs in an antibody could be engineered to further modulate activity of antibodies.


2021 ◽  
Author(s):  
Cecile Desbiez ◽  
Maria Luisa Domingo Calap ◽  
Michel Pitrat ◽  
Catherine Wipf-Scheibel ◽  
Gregory Girardot ◽  
...  

Cucumber vein yellowing virus (CVYV) is an emerging virus on cucurbits in the Mediterranean Basin, against which few resistance sources are available, particularly in melon. The melon accession PI 164323 displays complete resistance to isolate CVYV-Esp, and accession HSD 2458 presents a tolerance, i.e. very mild symptoms in spite of virus accumulation in inoculated plants. The resistance is controlled by a dominant allele Cvy-11, while the tolerance is controlled by a recessive allele cvy-2, independent from Cvy-11. Before introducing the resistance or tolerance in commercial cultivars through a long breeding process, it is important to estimate their specificity and durability. Upon inoculation with eight molecularly diverse CVYV isolates, the resistance was found to be isolate-specific since many CVYV isolates induced necrosis on PI 164323, whereas the tolerance presented a broader range. A resistance-breaking isolate inducing severe mosaic on PI 164323 was obtained. This isolate differed from the parental strain by a single amino acid change in the VPg coding region. An infectious CVYV cDNA clone was obtained, and the effect of the mutation in the VPg cistron on resistance to PI 164323 was confirmed by reverse genetics. This represents the first determinant for resistance-breaking in an ipomovirus. Our results indicate that the use of the Cvy-11 allele alone will not provide durable resistance to CVYV and that, if used in the field, it should be combined with other control methods such as cultural practices and pyramiding of resistance genes to achieve long-lasting resistance against CVYV.


Genome ◽  
2021 ◽  
Author(s):  
Sakura Hayashi ◽  
Takuji Tsukiyama ◽  
Atsuo Iida ◽  
Masato Kinoshita ◽  
Akihiko Koga

The majority of DNA-based transposable elements comprise autonomous and nonautonomous copies, or only nonautonomous copies, where the autonomous copy contains an intact gene for a transposase protein and the nonautonomous copy does not. Even if autonomous copies coexist, they are generally less frequent. The <i>Tol2</i> element of medaka fish is one of the few elements for which a nonautonomous copy has not yet been found. Here we report the presence of a nonautonomous <i>Tol2</i> copy that was identified by surveying the medaka genome sequence database. This copy contained 3 local sequence alterations that affected the deduced amino acid sequence of the transposase: a deletion of 15 nucleotides resulting in a deletion of 5 amino acids, a base substitution causing a single amino acid change, and another base substitution giving rise to a stop codon. Transposition assays using cultured human cells revealed that the transposase activity was reduced by the 15-nucleotide deletion and abolished by the nonsense mutation. This is the first example of a nonautonomous <i>Tol2</i> copy. Thus, <i>Tol2</i> is in an early stage of decay in the medaka genome, and is therefore a unique element to observe an almost whole decay process that progresses in natural populations.


2021 ◽  
Author(s):  
Jackie E Mahar ◽  
Maria Jenckel ◽  
Nina Huang ◽  
Elena Smertina ◽  
Edward C Holmes ◽  
...  

Abstract The diversity of lagoviruses (Caliciviridae) in Australia has increased considerably in recent years. By the end of 2017, five variants from three viral genotypes were present in populations of Australian rabbits, while prior to 2014 only two variants were known. To understand the evolutionary interactions among these lagovirus variants we monitored their geographical distribution and relative incidence over time in a continental-scale competition study. Within three years of the incursion of rabbit haemorrhagic disease virus 2 (RHDV2, denoted genotype GI.1bP-GI.2 [polymerase genotype]P-[capsid genotype]) into Australia, two novel recombinant lagovirus variants emerged: RHDV2-4e (genotype GI.4eP-GI.2) in New South Wales and RHDV2-4c (genotype GI.4cP-GI.2) in Victoria. Although both novel recombinants contain non-structural genes related to those from benign, rabbit-specific, enterotropic viruses, these variants were recovered from the livers of both rabbits and hares that had died acutely. This suggests that the determinants of host and tissue tropism for lagoviruses are associated with the structural genes, and that tropism is intricately connected with pathogenicity. Phylogenetic analyses demonstrated that the RHDV2-4c recombinant emerged independently on multiple occasions, with five distinct lineages observed. Both the new RHDV2-4e and 4c recombinant variants replaced the previous dominant parental RHDV2 (genotype GI.1bP-GI.2) in their respective geographical areas, despite sharing an identical or near-identical (i.e. single amino acid change) VP60 major capsid protein with the parental virus. This suggests that the observed replacement by these recombinants was not driven by antigenic variation in VP60, implicating the non-structural genes as key drivers of epidemiological fitness. Molecular clock estimates place the RHDV2-4e recombination event in early to mid-2015, while the five RHDV2-4c recombination events occurred from late 2015 through to early 2017. The emergence of at least six viable recombinant variants within a two-year period highlights the high frequency of these events, detectable only through intensive surveillance, and demonstrates the importance of recombination in lagovirus evolution.


2021 ◽  
Author(s):  
Wei-Ching Liang ◽  
Jianping Yin ◽  
Patrick Lupardus ◽  
Jianhuan Zhang ◽  
Kelly M. Loyet ◽  
...  

Abstract Antibody function is typically entirely dictated by the Complementarity Determining Regions (CDRs) that directly bind to the antigen, while the framework region acts as a scaffold for the CDRs and maintains overall structure of the variable domain. We recently reported that the rabbit monoclonal antibody 4A11 (rbt4A11) disrupts signaling through both TGFβ2 and TGFβ31. Here, we report a dramatic, unexpected discovery during the humanization of rbt4A11 where, two variants of humanized 4A11 (h4A11), v2 and v7 had identical CDRs, maintained high affinity binding to TGFβ2/3, yet exhibited distinct differences in activity. While h4A11.v7 completely inhibited TGFβ2/3 signaling like rbt4A11, h4A11.v2 did not. We solved crystal structures of TGFβ2 complexed with Fab fragments of h4A11.v2 or h4A11.v7 and identified a novel interaction between the two heavy chain molecules in the 2:2 TGFb2:h4A11.v2-Fab complex. Further characterization revealed that framework residue variations at either position 19, 79 or 81 of the heavy chain strikingly converts h4A11.v2 into an inhibitory antibody. Our work suggests that in addition to CDRs, framework residues and interactions between Fabs in an antibody could be engineered to further modulate activity of antibodies.


2021 ◽  
Author(s):  
Chanakha K. Navaratnarajah ◽  
David R. Pease ◽  
Peter Halfmann ◽  
Biruhalem Taye ◽  
Alison Barkhymer ◽  
...  

Severe cardiovascular complications can occur in coronavirus disease of 2019 (COVID-19) patients. Cardiac damage is attributed mostly to a bystander effect: the aberrant host response to acute respiratory infection. However, direct infection of cardiac tissue by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also occurs. We examined here the cardiac tropism of SARS-CoV-2 in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) that beat spontaneously. These cardiomyocytes express the angiotensin I converting-enzyme 2 (ACE2) receptor and a subset of the proteases that mediate spike protein cleavage in the lungs, but not transmembrane protease serine 2 (TMPRSS2). Nevertheless, SARS-CoV-2 infection was productive: viral transcripts accounted for about 88% of total mRNA. In the cytoplasm of infected hiPSC-CM, smooth walled exocytic vesicles contained numerous 65-90 nm particles with typical ribonucleocapsid structures, and virus-like particles with knob-like spikes covered the cell surface. To better understand the mechanisms of SARS-CoV-2 spread in hiPSC-CM we engineered an expression vector coding for the spike protein with a monomeric emerald-green fluorescent protein fused to its cytoplasmic tail (S-mEm). Proteolytic processing of S-mEm and the parental spike were equivalent. Live cell imaging tracked spread of S-mEm signal from cell to cell and documented formation of syncytia. A cell-permeable, peptide-based molecule that blocks the catalytic site of furin abolished cell fusion. A spike mutant with the single amino acid change R682S that inactivates the furin cleavage site was fusion inactive. Thus, SARS-CoV-2 can replicate efficiently in hiPSC-CM and furin activation of its spike protein is required for fusion-based cytopathology. This hiPSC-CM platform provides an opportunity for target-based drug discovery in cardiac COVID-19.


Sign in / Sign up

Export Citation Format

Share Document