Binding Motif
Recently Published Documents





2021 ◽  
Leo Hanke ◽  
Daniel J Sheward ◽  
Alec Pankow ◽  
Laura Perez Vidakovics ◽  
Vivien Karl ◽  

Conventional approaches to isolate and characterize nanobodies are laborious and cumbersome. Here we combine phage display, multivariate enrichment, and novel sequence analysis techniques to annotate an entire nanobody repertoire from an immunized alpaca. We combine this approach with a streamlined screening strategy to identify numerous anti-SARS-CoV-2 nanobodies, and use neutralization assays and Hydrogen/Deuterium exchange coupled to mass spectrometry (HDX-MS) epitope mapping to characterize their potency and specificity. Epitope mapping revealed that the binding site is a key determinant of neutralization potency, rather than affinity alone. The most potent nanobodies bind to the receptor binding motif of the RBD, directly preventing interaction with the host cell receptor ACE2, and we identify two exceptionally potent members of this category (with monomeric IC50s around 13 and 16 ng/ml). Other nanobodies bind to a more conserved epitope on the side of the RBD, and are able to potently neutralize the SARS-CoV-2 founder virus (42 ng/ml), the beta variant (B.1.351/501Y.V2) (35 ng/ml), and also cross-neutralize the more distantly related SARS-CoV-1 (0.46 μg/ml). The approach presented here is well suited for the screening of phage libraries to identify functional nanobodies for various biomedical and biochemical applications.

2021 ◽  
Vol 118 (30) ◽  
pp. e2105447118
Maria A. Schumacher ◽  
Kelley A. Gallagher ◽  
Neil A. Holmes ◽  
Govind Chandra ◽  
Max Henderson ◽  

Filamentous actinobacteria of the genus Streptomyces have a complex lifecycle involving the differentiation of reproductive aerial hyphae into spores. We recently showed c-di-GMP controls this transition by arming a unique anti-σ, RsiG, to bind the sporulation-specific σ, WhiG. The Streptomyces venezuelae RsiG–(c-di-GMP)2–WhiG structure revealed that a monomeric RsiG binds c-di-GMP via two E(X)3S(X)2R(X)3Q(X)3D repeat motifs, one on each helix of an antiparallel coiled-coil. Here we show that RsiG homologs are found scattered throughout the Actinobacteria. Strikingly, RsiGs from unicellular bacteria descending from the most basal branch of the Actinobacteria are small proteins containing only one c-di-GMP binding motif, yet still bind their WhiG partners. Our structure of a Rubrobacter radiotolerans (RsiG)2–(c-di-GMP)2–WhiG complex revealed that these single-motif RsiGs are able to form an antiparallel coiled-coil through homodimerization, thereby allowing them to bind c-di-GMP similar to the monomeric twin-motif RsiGs. Further data show that in the unicellular actinobacterium R. radiotolerans, the (RsiG)2–(c-di-GMP)2–WhiG regulatory switch controls type IV pilus expression. Phylogenetic analysis indicates the single-motif RsiGs likely represent the ancestral state and an internal gene-duplication event gave rise to the twin-motif RsiGs inherited elsewhere in the Actinobacteria. Thus, these studies show how the anti-σ RsiG has evolved through an intragenic duplication event from a small protein carrying a single c-di-GMP binding motif, which functions as a homodimer, to a larger protein carrying two c-di-GMP binding motifs, which functions as a monomer. Consistent with this, our structures reveal potential selective advantages of the monomeric twin-motif anti-σ factors.

2021 ◽  
Jiří Koubek ◽  
Rachel Niederer ◽  
Andrei Stanciu ◽  
Colin Echeverría Aitken ◽  
Wendy V Gilbert

Translation initiation is a highly regulated process which broadly affects eukaryotic gene expression. Eukaryotic initiation factor 3 (eIF3) is a central player in canonical and alternative pathways for ribosome recruitment. Here we have investigated how direct binding of eIF3 contributes to the large and regulated differences in protein output conferred by different 5′- untranslated regions (5′-UTRs) of cellular mRNAs. Using an unbiased high-throughput approach to determine the affinity of budding yeast eIF3 for native 5′-UTRs from 4,252 genes, we demonstrate that eIF3 binds specifically to a subset of 5′-UTRs that contain a short unstructured binding motif, AMAYAA. eIF3 binding mRNAs have higher ribosome density in growing cells and are preferentially translated under certain stress conditions, supporting the functional relevance of this interaction. Our results reveal a new class of translational enhancer and suggest a mechanism by which changes in core initiation factor activity enact mRNA-specific translation programs.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Maryam Izadi ◽  
Eric Seemann ◽  
Dirk Schlobinski ◽  
Lukas Schwintzer ◽  
Britta Qualmann ◽  

Local actin filament formation is indispensable for development of the dendritic arbor of neurons. We show that, surprisingly, the action of single actin filament-promoting factors was insufficient for powering dendritogenesis. Instead, this required the actin nucleator Cobl and its only evolutionary distant ancestor Cobl-like acting interdependently. This coordination between Cobl-like and Cobl was achieved by physical linkage by syndapins. Syndapin I formed nanodomains at convex plasma membrane areas at the base of protrusive structures and interacted with three motifs in Cobl-like, one of which was Ca2+/calmodulin-regulated. Consistently, syndapin I, Cobl-like’s newly identified N terminal calmodulin-binding site and the single Ca2+/calmodulin-responsive syndapin-binding motif all were critical for Cobl-like’s functions. In dendritic arbor development, local Ca2+/CaM-controlled actin dynamics thus relies on regulated and physically coordinated interactions of different F-actin formation-promoting factors and only together they have the power to bring about the sophisticated neuronal morphologies required for neuronal network formation in mammals.

2021 ◽  
Vol 118 (29) ◽  
pp. e2023079118
Mukesh Mahajan ◽  
Nikhil Bharambe ◽  
Yutong Shang ◽  
Bin Lu ◽  
Abhishek Mandal ◽  

Mitochondria form tubular networks that undergo coordinated cycles of fission and fusion. Emerging evidence suggests that a direct yet unresolved interaction of the mechanoenzymatic GTPase dynamin-related protein 1 (Drp1) with mitochondrial outer membrane–localized cardiolipin (CL), externalized under stress conditions including mitophagy, catalyzes essential mitochondrial hyperfragmentation. Here, using a comprehensive set of structural, biophysical, and cell biological tools, we have uncovered a CL-binding motif (CBM) conserved between the Drp1 variable domain (VD) and the unrelated ADP/ATP carrier (AAC/ANT) that intercalates into the membrane core to effect specific CL interactions. CBM mutations that weaken VD–CL interactions manifestly impair Drp1-dependent fission under stress conditions and induce “donut” mitochondria formation. Importantly, VD membrane insertion and GTP-dependent conformational rearrangements mediate only transient CL nonbilayer topological forays and high local membrane constriction, indicating that Drp1–CL interactions alone are insufficient for fission. Our studies establish the structural and mechanistic bases of Drp1–CL interactions in stress-induced mitochondrial fission.

Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 754
Jisu Hong ◽  
Youngjin Choi ◽  
Yoonjoo Choi ◽  
Jiwoo Lee ◽  
Hyo Jeong Hong

Hepatitis B virus (HBV) is a global health burden that causes acute and chronic hepatitis. To develop an HBV-neutralizing antibody that effectively prevents HBV infection, we previously generated a human anti-preS1 monoclonal antibody (1A8) that binds to genotypes A–D and validated its HBV-neutralizing activity in vitro. In the present study, we aimed to determine the fine epitope and paratope of 1A8 to understand the mechanism of HBV neutralization. We performed alanine-scanning mutagenesis on the preS1 (aa 19–34, genotype C) and the heavy (HCDR) and light (LCDR) chain complementarity-determining regions. The 1A8 recognized the three residues (Leu22, Gly23, and Phe25) within the highly conserved receptor-binding motif (NPLGFFP) of the preS1, while four CDR residues of 1A8 were critical in antigen binding. Structural analysis of the epitope–paratope interaction by molecular modeling revealed that Leu100 in the HCDR3, Ala50 in the HCDR2, and Tyr96 in the LCDR3 closely interacted with Leu22, Gly23, and Phe25 of the preS1. Additionally, we found that 1A8 also binds to the receptor-binding motif (NPLGFLP) of infrequently occurring HBV. The results suggest that 1A8 may broadly and effectively block HBV entry and thus have potential as a promising candidate for the prevention and treatment of HBV infection.

2021 ◽  
Iman Mehdizadeh Gohari ◽  
Jihong Li ◽  
Bruce A. McClane

Clostridium perfringens toxin production is often regulated by the Agr-like quorum sensing (QS) system signaling the VirS/VirR two-component regulatory system (TCRS), which consists of the VirS membrane sensor histidine kinase and the VirR response regulator. VirS/VirR is known to directly control expression of some genes by binding to a DNA binding motif consisting of two VirR boxes located within 500 bp of the target gene start codon. Alternatively, the VirS/VirR system can indirectly regulate production levels of other proteins by increasing expression of a small regulatory RNA (VR-RNA). Previous studies demonstrated that beta toxin (CPB) production by C. perfringens type B and C strains is positively-regulated by both the Agr-like QS and VirS/VirR TCRS, but the mechanism has been unclear. The current study first inactivated the vrr gene encoding VR-RNA to show that VirS/VirR regulation of cpb expression does not involve VR-RNA. Subsequently, bioinformatic analyses identified a potential VirR binding motif, along with a predicted strong promoter, ∼1.4 kb upstream of the cpb open reading frame (ORF). Two insertion sequences were present between this VirR binding motif/promoter region and the cpb ORF. PCR screening of a collection of strains carrying cpb showed that the presence and sequence of this VirR binding motif/promoter is highly conserved among CPB-producing strains. RT-PCR and a GusA reporter assay showed this VirR binding motif is important for regulating CPB producion. These findings indicate that VirS/VirR directly regulates cpb expression via VirS binding to a VirR binding motif located unusually distant from the cpb start codon. IMPORTANCE Clostridium perfringens beta toxin (CPB) is only produced by type B and C strains. Production of CPB is essential for the pathogenesis of type C-associated infections, which include hemorrhagic necrotizing enteritis and enterotoxemia in both humans and animals. In addition, CPB can synergize with other toxins during C. perfringens gastrointestinal diseases. CPB toxin production is cooperatively regulated by the Agr-like quorum sensing (QS) system and the VirS/VirR two-component regulatory system. This study now reports that the VirS/VirR regulatory cascade directly controls expression of the cpb gene via a process involving a VirR box binding motif located unusually far (∼1.4 kb) upstream of the cpb ORF. This study provides a better understanding of the regulatory mechanisms for CPB production by the VirS/VirR regulatory cascade.

PLoS Biology ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. e3001323
Qiu-Wen Wang ◽  
Ying-Han Wang ◽  
Bing Wang ◽  
Yun Chen ◽  
Si-Yao Lu ◽  

Synaptotagmin-7 (Syt7) plays direct or redundant Ca2+ sensor roles in multiple forms of vesicle exocytosis in synapses. Here, we show that Syt7 is a redundant Ca2+ sensor with Syt1/Doc2 to drive spontaneous glutamate release, which functions uniquely to activate the postsynaptic GluN2B-containing NMDARs that significantly contribute to mental illness. In mouse hippocampal neurons lacking Syt1/Doc2, Syt7 inactivation largely diminishes spontaneous release. Using 2 approaches, including measuring Ca2+ dose response and substituting extracellular Ca2+ with Sr2+, we detect that Syt7 directly triggers spontaneous release via its Ca2+ binding motif to activate GluN2B-NMDARs. Furthermore, modifying the localization of Syt7 in the active zone still allows Syt7 to drive spontaneous release, but the GluN2B-NMDAR activity is abolished. Finally, Syt7 SNPs identified in bipolar disorder patients destroy the function of Syt7 in spontaneous release in patient iPSC-derived and mouse hippocampal neurons. Therefore, Syt7 could contribute to neuropsychiatric disorders through driving spontaneous glutamate release.

2021 ◽  
Omar Ashwaq ◽  
Pratibha Manickavasagam ◽  
SK Manirul Haque

One of the many mutations that have occurred in the viral genome is the V483A mutation, which is a part of the receptor-binding motif present in the S1 domain of the spike protein. V483A mutant virus is popular in North America with 36 cases so far and frequently occurring in recent days. This review compares the wild-type and the V483A mutants to analyze certain factors like the interaction between the virus and host-cell interface, binding affinity, stability, partition energy, hydrophobicity, occurrence rate and transmissibility. This information can be of monumental importance in vaccine and drug development since the mutants can become resistant to the vaccines and monoclonal antibodies.

Export Citation Format

Share Document