coarse grained model
Recently Published Documents


TOTAL DOCUMENTS

646
(FIVE YEARS 191)

H-INDEX

51
(FIVE YEARS 7)

Soft Matter ◽  
2022 ◽  
Author(s):  
Haosheng Wen ◽  
Yu Zhu ◽  
Chenhui Peng ◽  
Sunil P. B. Kumar ◽  
Mohamed Laradji

In this article, we use a coarse-grained model of disjoint semi-flexible ring polymers to investigate computationally the spatiotemporal collective behavior of cell colonies. A ring polymer in this model is...


2021 ◽  
Author(s):  
Simou Sun ◽  
Trevor GrandPre ◽  
David T. Limmer ◽  
Jay T. Groves

AbstractLAT is a membrane-linked scaffold protein that undergoes a phase transition to form a two-dimensional protein condensate on the membrane during T cell activation. Governed by tyrosine phosphorylation, LAT recruits various proteins that ultimately enable condensation through a percolation network of discrete and selective protein-protein interactions. Here we describe detailed kinetic measurements of the phase transition, along with coarse-grained model simulations, that reveal LAT condensation is kinetically frustrated by the availability of bonds to form the network. Unlike typical miscibility transitions in which compact domains may coexist at equilibrium, the LAT condensates are dynamically arrested in extended states, kinetically trapped out of equilibrium. Modeling identifies the structural basis for this kinetic arrest as the formation of spindle arrangements, favored by limited multivalent binding interactions along the flexible, intrinsically disordered LAT protein. These results reveal how local factors controlling the kinetics of LAT condensation enable formation of different, stable condensates, which may ultimately coexist within the cell.


2021 ◽  
Author(s):  
Christopher Maffeo ◽  
Han-Yi Chou ◽  
Aleksei Aksimentiev

AbstractThe interpretation of single-molecule experiments is frequently aided by computational modeling of biomolecular dynamics. The growth of computing power and ongoing validation of computational models suggest that it soon may be possible to replace some experiments out-right with computational mimics. Here we offer a blueprint for performing single-molecule studies in silico using a DNA binding protein as a test bed. We demonstrate how atomistic simulations, typically limited to sub-millisecond durations and zeptoliter volumes, can guide development of a coarse-grained model for use in simulations that mimic experimental assays. We show that, after initially correcting excess attraction between the DNA and protein, qualitative consistency between several experiments and their computational equivalents is achieved, while additionally providing a detailed portrait of the underlying mechanics. Finally the model is used to simulate the trombone loop of a replication fork, a large complex of proteins and DNA.


2021 ◽  
Author(s):  
Salvatore Assenza ◽  
Rubén Pérez

AbstractWe introduce MADna, a sequence-dependent coarse-grained model of double-stranded DNA (dsDNA), where each nucleotide is described by three beads localized at the sugar and base moieties, and at the phosphate group. The sequence dependence is included by considering a step-dependent parameterization of the bonded interactions, which are tuned in order to reproduce the values of key observables obtained from exhaustive atomistic simulations from literature. The predictions of the model are benchmarked against an independent set of all-atom simulations, showing that it captures with high fidelity the sequence dependence of conformational and elastic features beyond the single step considered in its formulation. A remarkably good agreement with experiments is found for both sequence-averaged and sequence-dependent conformational and elastic features, including the stretching and torsion moduli, the twist-stretch and twist-bend couplings, the persistence length and the helical pitch. Overall, for the inspected quantities, the model has a precision comparable to atomistic simulations, hence providing a reliable coarse-grained description for the rationalization of singlemolecule experiments and the study of cellular processes involving dsDNA. Owing to the simplicity of its formulation, MADna can be straightforwardly included in common simulation engines.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christina Kurzthaler ◽  
Suvendu Mandal ◽  
Tapomoy Bhattacharjee ◽  
Hartmut Löwen ◽  
Sujit S. Datta ◽  
...  

AbstractEfficient navigation through disordered, porous environments poses a major challenge for swimming microorganisms and future synthetic cargo-carriers. We perform Brownian dynamics simulations of active stiff polymers undergoing run-reverse dynamics, and so mimic bacterial swimming, in porous media. In accord with experiments of Escherichia coli, the polymer dynamics are characterized by trapping phases interrupted by directed hopping motion through the pores. Our findings show that the spreading of active agents in porous media can be optimized by tuning their run lengths, which we rationalize using a coarse-grained model. More significantly, we discover a geometric criterion for the optimal spreading, which emerges when their run lengths are comparable to the longest straight path available in the porous medium. Our criterion unifies results for porous media with disparate pore sizes and shapes and for run-and-tumble polymers. It thus provides a fundamental principle for optimal transport of active agents in densely-packed biological and environmental settings.


Sign in / Sign up

Export Citation Format

Share Document