single amino acid
Recently Published Documents


TOTAL DOCUMENTS

3428
(FIVE YEARS 648)

H-INDEX

127
(FIVE YEARS 13)

2022 ◽  
Author(s):  
Monica Y Lee ◽  
Nur-Taz Rahman ◽  
Bill Sessa

Objective: We have previously demonstrated the in vivo importance of the Akt-eNOS substratekinase relationship, as defective postnatal angiogenesis characteristic of global Akt1-null mice is rescued when bred to gain-of-function eNOS S1176D mutant mice. While multiple studies support the cardioprotective role of endothelial NO generation, the causal role of Akt1-dependent eNOS S1176 phosphorylation during atherosclerotic plaque formation is not yet clear. Approach & Results: We herein bred congenic loss-of-function eNOS S1176A and gain-of function eNOS S1176D mutant mice to the proatherogenic Akt1-/-; ApoE-/- double knockout mice to definitively test the importance of Akt-mediated eNOS S1176 phosphorylation during atherogenesis. We find that a single amino acid substitution at the eNOS S1176 phosphorylation site yields divergent effects on atherosclerotic plaque formation, as an eNOS phospho-mimic aspartate (D) substitution at S1176 leads to decreased indices of atherosclerosis, even when on a proatherogenic Akt1 global deletion background. Conversely, mice harboring an unphosphorylatable mutation to alanine (S1176A) result in increased lipid deposition and cellular apoptosis, phenocopying the physiological consequence of eNOS deletion and/or impaired enzyme function. Furthermore, gene expression analyses of whole aortas indicate a combinatorial detriment from NO deficiency and Western Diet challenge, as loss-of-function eNOS SA mice on a high-fat and high-cholesterol diet present a unique expression pattern indicative of augmented T-cell activity when compared to eNOS S1176D mice. Conclusions: By using genetic epistasis approaches, we conclusively demonstrate that Akt mediated eNOS S1176 phosphorylation and subsequent activation remains to be the most physiologically relevant method of NO production to promote cardioprotective effects.


2022 ◽  
Vol 23 (2) ◽  
pp. 858
Author(s):  
Sali Anies ◽  
Vincent Jallu ◽  
Julien Diharce ◽  
Tarun J. Narwani ◽  
Alexandre G. de Brevern

Integrin αIIbβ3, a glycoprotein complex expressed at the platelet surface, is involved in platelet aggregation and contributes to primary haemostasis. Several integrin αIIbβ3 polymorphisms prevent the aggregation that causes haemorrhagic syndromes, such as Glanzmann thrombasthenia (GT). Access to 3D structure allows understanding the structural effects of polymorphisms related to GT. In a previous analysis using Molecular Dynamics (MD) simulations of αIIb Calf-1 domain structure, it was observed that GT associated with single amino acid variation affects distant loops, but not the mutated position. In this study, experiments are extended to Calf-1, Thigh, and Calf-2 domains. Two loops in Calf-2 are unstructured and therefore are modelled expertly using biophysical restraints. Surprisingly, MD revealed the presence of rigid zones in these loops. Detailed analysis with structural alphabet, the Proteins Blocks (PBs), allowed observing local changes in highly flexible regions. The variant P741R located at C-terminal of Calf-1 revealed that the Calf-2 presence did not affect the results obtained with isolated Calf-1 domain. Simulations for Calf- 1+ Calf-2, and Thigh + Calf-1 variant systems are designed to comprehend the impact of five single amino acid variations in these domains. Distant conformational changes are observed, thus highlighting the potential role of allostery in the structural basis of GT.


2022 ◽  
Author(s):  
Aitor Nogales ◽  
John Steel ◽  
Wen-Chun Liu ◽  
Anice C Lowen ◽  
Laura Rodriguez ◽  
...  

Influenza A viruses (IAV) remain emerging threats to human public health. Live-attenuated influenza vaccines (LAIV) are one of the most effective prophylactic options to prevent disease caused by influenza infections. However, licensed LAIV remain restricted for use in 2- to 49-year old healthy and non-pregnant people. Therefore, development of LAIV with increased safety, immunogenicity, and protective efficacy is highly desired. The United States (U.S.) licensed LAIV is based on the master donor virus (MDV) A/Ann Arbor/6/60 H2N2 backbone, which was generated by adaptation of the virus to growth at low temperatures. Introducing the genetic signature of the U.S. MDV into the backbone of other IAV strains resulted in varying levels of attenuation. While the U.S. MDV mutations conferred an attenuated phenotype to other IAV strains, the same amino acid changes did not significantly attenuate the pandemic A/California/04/09 H1N1 (pH1N1) strain. To attenuate pH1N1, we replaced the conserved leucine at position 319 with glutamine (L319Q) in PB1 and analyzed the in vitro and in vivo properties of pH1N1 viruses containing either PB1 L319Q alone or in combination with the U.S. MDV mutations using two animal models of influenza infection and transmission, ferrets and guinea pigs. Our results demonstrated that L319Q substitution in the pH1N1 PB1 alone or in combination with the mutations of the U.S. MDV resulted in reduced pathogenicity (ferrets) and transmission (guinea pigs), and an enhanced temperature sensitive phenotype. These results demonstrate the feasibility of generating an attenuated MDV based on the backbone of a contemporary pH1N1 IAV strain.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Rajni Parmar ◽  
Romit Seth ◽  
Ram Kumar Sharma

AbstractTea, being one of the most popular beverages requires large set of molecular markers for genetic improvement of quality, yield and stress tolerance. Identification of functionally relevant microsatellite or simple sequence repeat (SSR) marker resources from regulatory “Transcription factor (TF) genes” can be potential targets to expedite molecular breeding efforts. In current study, 2776 transcripts encoding TFs harbouring 3687 SSR loci yielding 1843 flanking markers were identified from traits specific transcriptome resource of 20 popular tea cultivars. Of these, 689 functionally relevant SSR markers were successfully validated and assigned to 15 chromosomes (Chr) of CSS genome. Interestingly, 589 polymorphic markers including 403 core-set of TF-SSR markers amplified 2864 alleles in key TF families (bHLH, WRKY, MYB-related, C2H2, ERF, C3H, NAC, FAR1, MYB and G2-like). Their significant network interactions with key genes corresponding to aroma, quality and stress tolerance suggests their potential implications in traits dissection. Furthermore, single amino acid repeat reiteration in CDS revealed presence of favoured and hydrophobic amino acids. Successful deployment of markers for genetic diversity characterization of 135 popular tea cultivars and segregation in bi-parental population suggests their wider utility in high-throughput genotyping studies in tea.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
A. Joseph Bloom ◽  
Xianrong Mao ◽  
Amy Strickland ◽  
Yo Sasaki ◽  
Jeffrey Milbrandt ◽  
...  

Abstract Background In response to injury, neurons activate a program of organized axon self-destruction initiated by the NAD+ hydrolase, SARM1. In healthy neurons SARM1 is autoinhibited, but single amino acid changes can abolish autoinhibition leading to constitutively active SARM1 enzymes that promote degeneration when expressed in cultured neurons. Methods To investigate whether naturally occurring human variants might disrupt SARM1 autoinhibition and potentially contribute to risk for neurodegenerative disease, we assayed the enzymatic activity of all 42 rare SARM1 alleles identified among 8507 amyotrophic lateral sclerosis (ALS) patients and 9671 controls. We then intrathecally injected mice with virus expressing SARM1 constructs to test the capacity of an ALS-associated constitutively active SARM1 variant to promote neurodegeneration in vivo. Results Twelve out of 42 SARM1 missense variants or small in-frame deletions assayed exhibit constitutive NADase activity, including more than half of those that are unique to the ALS patients or that occur in multiple patients. There is a > 5-fold enrichment of constitutively active variants among patients compared to controls. Expression of constitutively active ALS-associated SARM1 alleles in cultured dorsal root ganglion (DRG) neurons is pro-degenerative and cytotoxic. Intrathecal injection of an AAV expressing the common SARM1 reference allele is innocuous to mice, but a construct harboring SARM1V184G, the constitutively active variant found most frequently among the ALS patients, causes axon loss, motor dysfunction, and sustained neuroinflammation. Conclusions These results implicate rare hypermorphic SARM1 alleles as candidate genetic risk factors for ALS and other neurodegenerative conditions.


2022 ◽  
Author(s):  
Brian D Reed ◽  
Michael J Meyer ◽  
Valentin Abramzon ◽  
Omer Ad ◽  
Pat Adcock ◽  
...  

Proteins are the main structural and functional components of cells, and their dynamic regulation and post-translational modifications (PTMs) underlie cellular phenotypes. Next-generation DNA sequencing technologies have revolutionized our understanding of heredity and gene regulation, but the complex and dynamic states of cells are not fully captured by the genome and transcriptome. Sensitive measurements of the proteome are needed to fully understand biological processes and changes to the proteome that occur in disease states. Studies of the proteome would benefit greatly from methods to directly sequence and digitally quantify proteins and detect PTMs with single-molecule sensitivity and precision. However current methods for studying the proteome lag behind DNA sequencing in throughput, sensitivity, and accessibility due to the complexity and dynamic range of the proteome, the chemical properties of proteins, and the inability to amplify proteins. Here, we demonstrate single-molecule protein sequencing on a compact benchtop instrument using a dynamic sequencing by stepwise degradation approach in which single surface-immobilized peptide molecules are probed in real-time by a mixture of dye-labeled N-terminal amino acid recognizers and simultaneously cleaved by aminopeptidases. By measuring fluorescence intensity, lifetime, and binding kinetics of recognizers on an integrated semiconductor chip we are able to annotate amino acids and identify the peptide sequence. We describe the expansion of the number of recognizable amino acids and demonstrate the kinetic principles that allow individual recognizers to identify multiple amino acids in a highly information-rich manner that is sensitive to adjacent residues. Furthermore, we demonstrate that our method is compatible with both synthetic and natural peptides, and capable of detecting single amino acid changes and PTMs. We anticipate that with further development our protein sequencing method will offer a sensitive, scalable, and accessible platform for studies of the proteome.


2022 ◽  
Author(s):  
Ningning Wang ◽  
Xiaofeng Zhai ◽  
Xiaoling Li ◽  
Yu Wang ◽  
Wan-ting He ◽  
...  

The emergence of new epidemic variants of alphaviruses poses a public health risk. It is associated with adaptive mutations that often cause increased pathogenicity. Getah virus (GETV), a neglected and re-emerging mosquito-borne alphavirus, poses threat to many domestic animals and probably even humans. At present, the underlying mechanisms of GETV pathogenesis are not well defined. We identified a residue in the E2 glycoprotein that is critical for viral adsorption to cultured cells and pathogenesis in vivo . Viruses containing an arginine instead of a lysine at residue 253 displayed enhanced infectivity in mammalian cells and diminished virulence in a mouse model of GETV disease. Experiments in cell culture show that heparan sulfate (HS) is a new attachment factor for GETV, and the exchange Lys253Arg improves virus attachment by enhancing binding to HS. The mutation also results in more effective binding to glycosaminoglycan (GAG), linked to low virulence due to rapid virus clearance from the circulation. Localization of residue 253 in the 3D structure of the spike revealed several other basic residues in E2 and E1 in close vicinity that might constitute an HS-binding site different from sites previously identified in other alphaviruses. Overall, our study reveals that HS acts as the attachment factor of GETV and provides convincing evidence for an HS-binding determinant at residue 253 in the E2 glycoprotein of GETV, which contributes to infectivity and virulence. IMPORTANCE Due to decades of inadequate monitoring and lack of vaccines and specific treatment, a large number of people have been infected with alphaviruses. GETV is a re-emerging alphavirus that has the potential to infect humans. This specificity of the GETV disease, particularly its propensity for chronic musculoskeletal manifestations, underscores the need to identify the genetic determinants that govern GETV virulence in the host. Using a mouse model, we show that a single amino acid substitution at residue 253 in the E2 glycoprotein causes attenuation of the virus. Residue 253 might be part of a binding site for HS, a ubiquitous attachment factor on the cell surface. The substitution of Lys by Arg improves cell attachment of the virus in vitro and virus clearance from the blood in vivo by enhancing binding to HS. In summary, we have identified HS as a new attachment factor for GETV and the corresponding binding site in the E2 protein for the first time. Our research potentially improved understanding of the pathogenic mechanism of GETV and provided a potential target for the development of new attenuated vaccines and antiviral drugs.


2022 ◽  
Author(s):  
Andrew Savinov ◽  
Andres Fernandez ◽  
Stanley Fields

Massively-parallel measurements of dominant negative inhibition by protein fragments have been used to map protein interaction sites and discover peptide inhibitors. However, the underlying principles governing fragment-based inhibition have thus far remained unclear. Here, we adapt a high-throughput inhibitory fragment assay for use in Escherichia coli, applying it to a set of ten essential proteins. This approach yielded single amino acid resolution maps of inhibitory activity, with peaks localized to functionally important interaction sites, including oligomerization interfaces and folding contacts. Leveraging these data, we perform a systematic analysis to uncover principles of fragment-based inhibition. We determine a robust negative correlation between susceptibility to inhibition and cellular protein concentration, demonstrating that inhibitory fragments likely act primarily by titrating native protein interactions. We also characterize a series of trade-offs related to fragment length, showing that shorter peptides allow higher-resolution mapping but suffer from lower inhibitory activity. We employ an unsupervised statistical analysis to show that the inhibitory activities of protein fragments are largely driven not by generic properties such as charge, hydrophobicity, and secondary structure, but by the more specific characteristics of their bespoke macromolecular interactions. AlphaFold computational modeling of peptide complexes with one protein shows that the inhibitory activity of peptides is associated with their predicted ability to form native-like interactions. Overall, this work demonstrates fundamental characteristics of inhibitory protein fragment function and provides a foundation for understanding and controlling protein interactions in vivo.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Leos Cmarko ◽  
Robin N. Stringer ◽  
Bohumila Jurkovicova-Tarabova ◽  
Tomas Vacik ◽  
Lubica Lacinova ◽  
...  

AbstractLow-voltage-activated T-type Ca2+ channels are key regulators of neuronal excitability both in the central and peripheral nervous systems. Therefore, their recruitment at the plasma membrane is critical in determining firing activity patterns of nerve cells. In this study, we report the importance of secretory carrier-associated membrane proteins (SCAMPs) in the trafficking regulation of T-type channels. We identified SCAMP2 as a novel Cav3.2-interacting protein. In addition, we show that co-expression of SCAMP2 in mammalian cells expressing recombinant Cav3.2 channels caused an almost complete drop of the whole cell T-type current, an effect partly reversed by single amino acid mutations within the conserved cytoplasmic E peptide of SCAMP2. SCAMP2-induced downregulation of T-type currents was also observed in cells expressing Cav3.1 and Cav3.3 channel isoforms. Finally, we show that SCAMP2-mediated knockdown of the T-type conductance is caused by the lack of Cav3.2 expression at the cell surface as evidenced by the concomitant loss of intramembrane charge movement without decrease of total Cav3.2 protein level. Taken together, our results indicate that SCAMP2 plays an important role in the trafficking of Cav3.2 channels at the plasma membrane.


2022 ◽  
Author(s):  
Choon-Tak Kwon ◽  
Lingli Tang ◽  
Xingang Wang ◽  
Iacopo Gentile ◽  
Anat Hendelman ◽  
...  

Gene duplications are a hallmark of plant genome evolution and a foundation for genetic interactions that shape phenotypic diversity. Compensation is a major form of paralog interaction, but how compensation relationships change as allelic variation accumulates is unknown. Here, we leveraged genomics and genome editing across the Solanaceae family to capture the evolution of compensating paralogs. Mutations in the stem cell regulator CLV3 cause floral organs to overproliferate in many plants. In tomato, this phenotype is partially suppressed by transcriptional upregulation of a closely related paralog. Tobacco lost this paralog, resulting in no compensation and extreme clv3 phenotypes. Strikingly, the paralogs of petunia and groundcherry nearly completely suppress clv3, indicating a potent ancestral state of compensation. Cross-species transgenic complementation analyses show this potent compensation partially degenerated in tomato due to a single amino acid change in the paralog and cis-regulatory variation that limits its transcriptional upregulation. Our findings show how genetic interactions are remodeled following duplications, and suggest that dynamic paralog evolution is widespread over short time scales and impacts phenotypic variation from natural and engineered mutations.


Sign in / Sign up

Export Citation Format

Share Document