Semiautomatic construction of isobase surfaces: A case study from the central Western Carpathians

2015 ◽  
Vol 78 ◽  
pp. 73-80 ◽  
Author(s):  
Karel Jedlička ◽  
Ján Sládek ◽  
Jakub Šilhavý
2019 ◽  
Vol 70 (4) ◽  
pp. 279-297
Author(s):  
Dušan Starek ◽  
Vladimír Šimo ◽  
Silvia Antolíková ◽  
Tomáš Fuksi

Abstract Outcrops of a thick turbiditic succession are exposed on the northern bank of the Liptovská Mara reservoir near Liptovská Ondrašová and Ráztoky. The section consists of rhythmic, predominantly thin- to medium-bedded turbidites of the Rupelian age. Their biostratigraphy is based on the calcareous nannofossils. Facies associations of these deposits represent different components of depositional lobe deposits in the turbidity fan system, including mainly the lobe fringe and lobe distal fringe/inter-lobe facies associations and locally the medium bedded deposits of the lobe off-axis facies association. This interpretation is supported by statistical analysis. The deep-sea turbiditic deposits contain trace fossil associations, which include deep-tier fodinichnia and domichnia up to shallow-tier graphoglyptids. Paleocurrent measurements indicate that the majority of sedimentary material was transported from SW and W.


2018 ◽  
Vol 69 (4) ◽  
pp. 365-381 ◽  
Author(s):  
Dušan Plašienka ◽  
Viera Šimonová ◽  
Jana Bučová

Abstract The Manín Unit represents a transitional tectonic element between the Central Western Carpathians and the Pieniny Klippen Belt. The overall map-view structure of the Manín Unit is dominated by elliptical antiforms composed of comparatively competent Jurassic and Lower Cretaceous strata, surrounded by soft Upper Cretaceous shales, marls and sandstones. During layer-parallel shortening, the Manín sedimentary succession behaved as a multilayer reinforced by a variously thick rigid layer of massive Urgonian limestone. The multilayer deformed by flexural slip folding, but the fold wavelength was controlled by the rigid layer undergoing buckling. It is inferred that, besides the lateral thickness differences in the rigid layer, development of brachyfolds and particularly periclines such as the Butkov fold also resulted from the interference of two perpendicular macroscopic fold systems.


2018 ◽  
Vol 69 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Andrej Čerňanský ◽  
Nicole Klein ◽  
Ján Soták ◽  
Mário Olšavský ◽  
Juraj Šurka ◽  
...  

AbstractAn eosauropterygian skeleton found in the Middle Triassic (upper Anisian) Gutenstein Formation of the Fatric Unit (Demänovská dolina Valley, Low Tatra Mountains, Slovakia) represents the earliest known occurrence of marine tetrapods in the Western Carpathians. The specimen represents a partly articulated portion of the postcranial skeleton (nine dorsal vertebrae, coracoid, ribs, gastral ribs, pelvic girdle, femur and one zeugopodial element). It is assigned to the Pachypleurosauria, more precisely to theSerpianosaurus–Neusticosaurusclade based on the following combination of features: (1) small body size; (2) morphology of vertebrae, ribs and femur; (3) tripartite gastral ribs; and (4) microanatomy of the femur as revealed by μCT. Members of this clade were described from the epicontinental Germanic Basin and the Alpine Triassic (now southern Germany, Switzerland, Italy), and possibly from Spain. This finding shows that pachypleurosaur reptiles attained a broader geographical distribution during the Middle Triassic, with their geographical range reaching to the Central Western Carpathians. Pachypleurosaurs are often found in sediments formed in shallow, hypersaline carbonate-platform environments. The specimen found here occurs in a succession with vermicular limestones in a shallow subtidal zone and stromatolitic limestones in a peritidal zone, indicating that pachypleurosaurs inhabited hypersaline, restricted carbonate ramps in the Western Carpathians.


2012 ◽  
Vol 63 (1) ◽  
pp. 13-32 ◽  
Author(s):  
Roberta Prokešová ◽  
Dušan Plašienka ◽  
Rastislav Milovský

Structural pattern and emplacement mechanisms of the Krížna cover nappe (Central Western Carpathians)The Central Western Carpathians are characterized by both the thick- and thin-skinned thrust tectonics that originated during the Cretaceous. The Krížna Unit (Fatric Superunit) with a thickness of only a few km is the most widespread cover nappe system that completely overthrusts the Tatric basement/cover superunit over an area of about 12 thousands square km. In searching for a reliable model of its origin and emplacement, we have collected structural data throughout the nappe body from its hinterland backstop (Veporic Superunit) to its frontal parts. Fluid inclusion (FI) data from carbonate cataclastic rocks occurring at the nappe sole provided useful information about the p-T conditions during the nappe transport. The crucial phenomena considered for formulation of our evolutionary model are: (1) the nappe was derived from a broad rifted basinal area bounded by elevated domains; (2) the nappe body is composed of alternating, rheologically very variable sedimentary rock complexes, hence creating a mechanically stratified multilayer; (3) presence of soft strata serving as décollement horizons; (4) stress and strain gradients increasing towards the backstop; (5) progressive internal deformation at very low-grade conditions partitioned into several deformation stages reflecting varying external constraints for the nappe movement; (6) a very weak nappe sole formed by cataclasites indicating fluid-assisted nappe transport during all stages; (7) injection of hot overpressured fluids from external sources (deformed basement units) facilitating frontal ramp overthrusting under supralithostatic conditions. It was found that no simple mechanical model can be applied, but that all known principal emplacement mechanisms and driving forces temporarily participated in progressive structural evolution of the nappe. The rear compression operated during the early stages, when the sedimentary succession was detached, shortened and transported over the frontal ramp. Subsequently, gravity spreading and gliding governed the final nappe emplacement over the unconstrained basinal foreland.


Sign in / Sign up

Export Citation Format

Share Document