accretionary wedge
Recently Published Documents


TOTAL DOCUMENTS

403
(FIVE YEARS 127)

H-INDEX

46
(FIVE YEARS 4)

2022 ◽  
Vol 369 ◽  
pp. 106505
Author(s):  
Sonia Ouadahi ◽  
Abderrahmane Bendaoud ◽  
Jean-Louis Bodinier ◽  
Jean-Marie Dautria ◽  
Alain Vauchez ◽  
...  
Keyword(s):  

2022 ◽  
Author(s):  
Emmy Tsui-Yu CHANG ◽  
Laetitia Mozziconacci

Abstract Faulting in subducting plates is a critical process that changes the mechanical properties the subducting lithosphere and serves as a carrier of surface materials into mantle wedges. Two intraplate earthquake sequences located in the northern Manila subduction system were investigated in this study, which revealed distinct fault planes but a contrasting seismogeny over the northern Manila Trench. The seismic sequences analyzed in this study were of small-to-moderate events. The events were separately acquired by two ocean-bottom seismometer networks deployed on the frontal accretionary wedge in 2005 and the outer trench slope in 2006. The retrieved seismicity in the frontal wedge (in 2005) mainly included the overpressured sequence, whereas that in the approaching plate (in 2006) was aftershocks of an extensional faulting sequence. The obtained seismic velocity models and Vp/Vs ratios revealed that the overpressure was likely caused by dehydration within the shallow subduction zone. By using the near-field waveform inversion algorithm, we determined focal mechanism solutions for a few relatively large earthquakes. Data from global seismic observations were also used to conclude that stress transfer may be responsible for the seismic activity in the study area in 2005–2006. In late 2005, the plate interface in the frontal wedge area was unlocked by overpressure effect with the thrusting-dominant sequence. This event changed the stress regime across the Manila Trench and triggered the normal fault extension at the outer trench slope in mid-2006. However, the hybrid focal solution indicating reverse and strike-slip mechanisms provided in this study revealed that the plate interface had become locked again in late 2006.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Ayumu Miyakawa ◽  
Atsushi Noda ◽  
Hiroaki Koge

AbstractWe propose a conceptual geological model for the collision of multiple basement topographic highs (BTHs; e.g., seamounts, ridges, and horsts) with a forearc accretionary wedge. Even though there are many BTHs on an oceanic plate, there are few examples of modeling the collision of multiple BTHs. We conducted numerical simulations using the discrete element method to examine the effects of three BTH collisions with forearcs. The typical geological structure associated with a BTH collision was reproduced during the collision of the first BTH, and multiple BTH collisions create a cycle of formation of BTH collisional structures. Each BTH forces the basal décollement to move up to the roof décollement, and the roof décollement becomes inactive after the passage of the BTH, and then the décollement moves down to the base. As the active décollement position changes, the sequences of underthrust sediments and uplifted imbricate thrusts are sandwiched between the décollements and incorporated into the wedge. At a low horizontal compressive stress, a “shadow zone” is formed behind (i.e., seaward of) the BTH. When the next BTH collides, the horizontal compressive stress increases and tectonic compaction progresses, which reduce the porosity in the underthrust sediments. Heterogeneous evolution of the geological and porosity structure can generate a distinctive pore pressure pattern. The underthrust sediments retain fluid in the “shadow” of the BTH. Under the strong horizontal compressive stresses associated with the next BTH collision, pore pressure increases along with a rapid reduction of porosity in the underthrust sediments. The distinctive structural features observed in our model are comparable to the large faults in the Kumano transect of the Nankai Trough, Japan, where a splay fault branches from the plate boundary and there are old and active décollements. A low-velocity and high-pore-pressure zone is located at the bottom of the accretionary wedge and in front (i.e., landward) of the subducting ridge in the Kumano transect. This suggests that strong horizontal compressive stresses associated with the current BTH collision has increased the pore pressure within the underthrust sediments associated with previous BTHs.


Author(s):  
Maria Giuditta Fellin ◽  
Malwina San Jose ◽  
Claudio Faccenna ◽  
Sean D. Willett ◽  
Domenico Cosentino ◽  
...  

Stratigraphic and thermochronologic data are used to study the processes that shaped the topography of the central Apennines of Italy. These are part of a major, active mountain belt in the center of the Mediterranean area, where several subduction zones control a complex topography. The Apennines were shaped by contraction at the front of the accretionary wedge overlying the subducting Adria microplate followed by extension at the wedge rear in response to eastward slab roll-back. In the central Apennines, intermontane extensional basins on the western flank rise eastward toward the summit. We contribute with new data consisting of 28 (U-Th-Sm)/He and 10 fission track ages on apatites to resolve a complex pattern of thermal histories in time and space, which we interpret as reflecting the transitional state of the orogen, undergoing a two-phase evolution related to initial slab retreat, followed by slab detachment. Along the Tyrrhenian coast, we document cooling from depths ≥3−4 km occurring between 8 and 5 Ma and related to the opening of marine extensional basins. Post−5 Ma, a broader region of the central Apennines exhibits cooling from variable depths, between <2 km in most areas and ≥3−4 km in the northeast, and with different onset times: at ca. 4 Ma in the west, at ca. 2.5 Ma in the center and northeast, and at ca. 1 Ma in the southeast. Between 5 and 2.5 Ma, exhumation is associated with modest topographic growth during the late stages of thrusting. Since 2.5 Ma, exhumation has concurred with the opening of intermontane basins in the west and in the east, with regional topographic growth and erosion, that we interpret to be associated with the locally detaching slab.


2021 ◽  
Author(s):  
Adina E. Pusok ◽  
Dave R. Stegman ◽  
Madeleine Kerr

Abstract. Subduction zones represent the only major pathway by which continental material can be returned to the Earth's mantle. Constraining the sediments mass flux through subduction zones is important to the understanding of both petrogenesis of continental crust, and the recycling of volatiles and continental material back into the mantle over long periods of geologic time. When sediments are considered, convergent margins appear to fall into one of two classes: accretionary and erosive. Accretionary margins are dominated by accretion of thick piles of sediments (> 1 km) from the subducting plate, while tectonic erosion is favored in regions where the sedimentary cover is < 1 km. However, as data help define geometry of the global subduction system, the consequences of the two styles of margins on subduction dynamics remain poorly resolved. In this study, we run systematic 2-D numerical simulations of subduction to investigate how sediment fluxes influence subduction dynamics and plate coupling. We vary the thickness and viscosity of the sediment layer entering subduction, the thickness of the upper plate, and the driving velocity of the subducting plate (i.e., kinematic boundary conditions). Our results show three modes of subduction interface: a) Tectonic erosion margin (high viscosity sediment layer), b) Low angle accretionary wedge margin (low viscosity, thin sediment layer), and c) High angle accretionary wedge margin (low viscosity, thick sediment layer). We find that the properties of the sediment layer modulate the extent of viscous coupling at the interface between the subducting and overriding plates. When the viscous coupling is increased, an erosive style margin will be favored over an accretionary style. On the other hand, when the viscous coupling is reduced, sediments are scrapped-off the subducting slab to form an accretionary wedge. Diagnostic parameters are extracted automatically from numerical simulations to analyze the dynamics and differentiate between these modes of subduction margin. Models of tectonic erosion margins show small radii of curvature, slow convergence rates and thin subduction interfaces, while results of accretionary margins show large radii of curvature, faster convergence rates and dynamic accretionary wedges. These diagnostics parameters are then linked with observations of present-day subduction zones.


2021 ◽  
Vol 929 (1) ◽  
pp. 012001
Author(s):  
E A Bataleva ◽  
K S Nepeina

Abstract Based on the analysis of deep geophysical (geoelectric and seismic) models of the Central Tien Shan, structures with the morphology resembling the crown of palm trees or the shape of a flower were identified. Geoelectric models are considered along a series of regional profiles (75º, 76º, 76º 30’). The length of the profiles intersecting all the main tectonic structures of the Tien Shan ranges from 75 to 250 km. Particular attention was paid to those zones of concentrated deformation, where the tectonic regime combines the conditions of shear and lateral compression (transpression zones). The structure of the collisional - accretionary wedge of the Atbashi zone in the distribution of electrical and velocity characteristics of the geological section is considered. Geoelectric models plotted along a series of regional profiles identify areas of increased electrical conductivity and show “flower structures”. The integral picture of the distribution and morphology of zones of increased electrical conductivity in the segments of the Earth’s crust of the Central Tien Shan may reflect a discretely localized manifestation of palm tree structures due to the evolution of transpressive suture zones during the Hercynian and Alpine tectogenesis.


2021 ◽  
Author(s):  
Ayumu Miyakawa ◽  
Atsushi Noda ◽  
Hiroaki Koge

Abstract We propose a conceptual geological model for the collision of multiple basement topographic highs (BTHs; e.g., seamounts, ridges, and horsts) with a forearc accretionary wedge. Even though there are many BTHs on an oceanic plate, there are few examples of modeling the collision of multiple BTHs. We conducted numerical simulations using the discrete element method to examine the effects of three BTH collisions with forearcs. The typical geological structure associated with a BTH collision was reproduced during the collision of the first BTH, and multiple BTH collisions create a cycle of formation of BTH collisional structures. Each BTH forces the basal décollement to move up to the roof décollement, and the roof décollement becomes inactive after the passage of the BTH, and then the décollement moves down to the base. As the active décollement position changes, the sequences of underthrust sediments and uplifted imbricate thrusts are sandwiched between the décollements and incorporated into the wedge. At a low horizontal compressive stress, a “shadow zone” is formed behind (i.e., seaward of) the BTH. When the next BTH collides, the horizontal compressive stress increases and tectonic compaction progresses, which reduce the porosity in the underthrust sediments. Heterogeneous evolution of the geological and porosity structure can generate a distinctive pore pressure pattern. The underthrust sediments retain fluid in the “shadow” of the BTH. Under the strong horizontal compressive stresses associated with the next BTH collision, pore pressure increases along with a rapid reduction of porosity in the underthrust sediments. The distinctive structural features observed in our model are comparable to the large faults in the Kumano transect of the Nankai Trough, Japan, where a splay fault branches from the plate boundary and there are old and active décollements. A low-velocity and high-pore-pressure zone are located at the bottom of the accretionary wedge and in front (i.e., landward) of the subducting ridge in the Kumano transect. This suggests that strong horizontal compressive stresses associated with the current BTH collision has increased the pore pressure within the underthrust sediments associated with previous BTHs.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 988
Author(s):  
Marián Putiš ◽  
Ondrej Nemec ◽  
Martin Danišík ◽  
Fred Jourdan ◽  
Ján Soták ◽  
...  

The composite Albian–Eocene orogenic wedge of the northern part of the Inner Western Carpathians (IWC) comprises the European Variscan basement with the Upper Carboniferous–Triassic cover and the Jurassic to Upper Cretaceous sedimentary successions of a large oceanic–continental Atlantic (Alpine) Tethys basin system. This paper presents an updated evolutionary model for principal structural units of the orogenic wedge (i.e., Fatricum, Tatricum and Infratatricum) based on new and published white mica 40Ar/39Ar geochronology and P–T estimates by Perple_X modeling and geothermobarometry. The north-directed Cretaceous collision led to closure of the Jurassic–Early Cretaceous basins, and incorporation of their sedimentary infill and a thinned basement into the Albian–Cenomanian/Turonian accretionary wedge. During this compressional D1 stage, the subautochthonous Fatric structural units, including the present-day higher Infratatric nappes, achieved the metamorphic conditions of ca. 250–400 °C and 400–700 MPa. The collapse of the Albian–Cenomanian/Turonian wedge and contemporary southward Penninic oceanic subduction enhanced the extensional exhumation of the low-grade metamorphosed structural complexes (D2 stage) and the opening of a fore-arc basin. This basin hemipelagic Coniacian–Campanian Couches-Rouges type marls (C.R.) spread from the northern Tatric edge, throughout the Infratatric Belice Basin, up to the peri-Pieniny Klippen Belt Kysuca Basin, thus tracing the south-Penninic subduction. The ceasing subduction switched to the compressional regime recorded in the trench-like Belice “flysch” trough formation and the lower anchi-metamorphism of the C.R. at ca. 75–65 Ma (D3 stage). The Belice trough closure was followed by the thrusting of the exhumed low-grade metamorphosed higher Infratatric complexes and the anchi-metamorphosed C.R. over the frontal unmetamorphosed to lowest anchi-metamorphosed Upper Campanian–Maastrichtian “flysch” sediments at ca. 65–50 Ma (D4 stage). Phengite from the Infratatric marble sample SRB-1 and meta-marl sample HC-12 produced apparent 40Ar/39Ar step ages clustered around 90 Ma. A mixture interpretation of this age is consistent with the presence of an older metamorphic Ph1 related to the burial (D1) within the Albian–Cenomanian/Turonian accretionary wedge. On the contrary, a younger Ph2 is closely related to the late- to post-Campanian (D3) thrust fault formation over the C.R. Celadonite-enriched muscovite from the subautochthonous Fatric Zobor Nappe meta-quartzite sample ZI-3 yielded a mini-plateau age of 62.21 ± 0.31 Ma which coincides with the closing of the Infratatric foreland Belice “flysch” trough, the accretion of the Infratatricum to the Tatricum, and the formation of the rear subautochthonous Fatricum bivergent structure in the Eocene orogenic wedge.


Sign in / Sign up

Export Citation Format

Share Document